Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load

eNeuro. 2017 Apr 27;4(2):ENEURO.0365-17.2017. doi: 10.1523/ENEURO.0365-17.2017. eCollection 2017 Mar-Apr.

Abstract

Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain's capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations.

Keywords: adaptive coding; computational model comparison; functional near-infrared spectroscopy; memory load; prefrontal cortex; risky decision-making; value normalization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Decision Making / physiology*
  • Female
  • Humans
  • Male
  • Memory / physiology*
  • Photic Stimulation / methods
  • Prefrontal Cortex / physiology*
  • Reaction Time / physiology
  • Reward*
  • Risk
  • Young Adult