TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia

CNS Neurol Disord Drug Targets. 2013 May 1;12(3):360-70. doi: 10.2174/18715273113129990061.

Abstract

In this study, we investigated the effects of a bioactive high-affinity TrkB receptor agonist 7,8- dihydroxyflavone (7,8 DHF) on neonatal brain injury in female and male mice after hypoxia ischemia (HI). HI was induced by exposure of postnatal day 9 (P9) mice to 10% O2 for 50 minutes at 37°C after unilateral ligation of the left common carotid artery. Animals were randomly assigned to HI-vehicle control group [phosphate buffered saline (PBS), intraperitoneally (i.p.)] or HI + 7,8 DHF-treated groups (5 mg/kg in PBS, i.p at 10 min, 24 h, or with subsequent daily injections up to 7 days after HI). The HI-vehicle control mice exhibited neuronal degeneration in the ipsilateral hippocampus and cortex with increased Fluoro-Jade C positive staining and loss of microtubule associated protein 2 expression. In contrast, the 7,8 DHF-treated mice showed less hippocampal neurodegeneration and astrogliosis, with more profound effects in female than in male mice. Moreover, 7,8 DHF-treated mice improved motor learning and spatial learning at P30-60 compared to the HI-vehicle control mice. Diffusion tensor imaging of ex vivo brain tissues at P90 after HI revealed less reduction of fractional anisotropy values in the ipsilateral corpus callosum of 7,8 DHF-treated brains, which was accompanied with better preserved myelin basic protein expression and CA1 hippocampal structure. Taken together, these findings strongly suggest that TrkB agonist 7,8 DHF is protective against HI-mediated hippocampal neuronal death, white matter injury, and improves neurological function, with a more profound response in female than in male mice.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging
  • Animals
  • Cerebral Cortex / metabolism
  • Cerebral Cortex / pathology
  • Corpus Callosum / pathology
  • Female
  • Flavones / pharmacology*
  • Flavones / therapeutic use
  • Gliosis / complications
  • Gliosis / drug therapy
  • Hippocampus / metabolism
  • Hippocampus / pathology
  • Hypoxia-Ischemia, Brain / complications
  • Hypoxia-Ischemia, Brain / drug therapy
  • Hypoxia-Ischemia, Brain / metabolism
  • Hypoxia-Ischemia, Brain / pathology
  • Learning / drug effects
  • Male
  • Mice
  • Microtubule-Associated Proteins / metabolism
  • Myelin Basic Protein / metabolism
  • Nerve Degeneration / drug therapy*
  • Nerve Fibers, Myelinated / pathology
  • Neuroimaging
  • Neuroprotective Agents / pharmacology*
  • Neuroprotective Agents / therapeutic use
  • Receptor, trkB / agonists*
  • Recovery of Function / drug effects
  • Sex Characteristics*

Substances

  • 6,7-dihydroxyflavone
  • Flavones
  • Microtubule-Associated Proteins
  • Myelin Basic Protein
  • Neuroprotective Agents
  • Receptor, trkB