BDNF regulates neuronal sensitivity to endocannabinoids

Neurosci Lett. 2009 Dec 25;467(2):90-4. doi: 10.1016/j.neulet.2009.10.011. Epub 2009 Oct 8.

Abstract

The diacylglycerol lipases (DAGLalpha/beta) synthesize 2-arachidonylglycerol (2-AG), the major endocannabinoid in the developing and adult brain (eCB). This lipid acts on cannabinoid receptors to regulate axonal growth and guidance, activity-dependent synaptic plasticity and adult neurogenesis, and can also protect neurons from excitotoxicity. 2-AG action is generally terminated by monoacylglycerol lipase (MAGL), however we know very little about the mechanisms that regulate neuronal sensitivity to eCBs. In the present study we show that the brain-derived neurotrophic factor (BDNF) can determine neuronal sensitivity to eCBs. In this context, in cultured cerebellar granule neurons (CGNs) BDNF increases the expression of CB1 receptor transcripts and decreases expression of MAGL transcripts. Using phosphorylation of Akt as the readout, we show that BDNF can promote a stable increase in neuronal sensitivity to eCBs. For example, concentrations of 2-AG and noladin either (NE) that normally do not lead to Akt phosphorylation in control neurons do so in neurons pre-treated with BDNF. In addition, Akt phosphorylation in response to a wide range of concentrations of NE was always greater in neurons pre-treated with BDNF. Our data suggests the existence of a positive feedback loop that might sustain neuronal survival in the normal brain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Arachidonic Acids / pharmacology
  • Arachidonic Acids / physiology
  • Brain-Derived Neurotrophic Factor / pharmacology
  • Brain-Derived Neurotrophic Factor / physiology*
  • Cannabinoid Receptor Modulators / biosynthesis*
  • Cannabinoid Receptor Modulators / genetics
  • Cells, Cultured
  • Cerebellum / cytology
  • Down-Regulation
  • Endocannabinoids*
  • Glycerides / pharmacology
  • Glycerides / physiology
  • Monoacylglycerol Lipases / biosynthesis
  • Monoacylglycerol Lipases / genetics
  • Neurons / drug effects
  • Neurons / metabolism*
  • Phosphorylation
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Receptor, Cannabinoid, CB1 / biosynthesis
  • Receptor, Cannabinoid, CB1 / genetics
  • Up-Regulation

Substances

  • Arachidonic Acids
  • Brain-Derived Neurotrophic Factor
  • Cannabinoid Receptor Modulators
  • Endocannabinoids
  • Glycerides
  • Receptor, Cannabinoid, CB1
  • noladin ether
  • glyceryl 2-arachidonate
  • Proto-Oncogene Proteins c-akt
  • Monoacylglycerol Lipases