Saccade-related Purkinje cells in the cerebellar hemispheres of the monkey

Exp Brain Res. 1991;84(3):465-70. doi: 10.1007/BF00230957.

Abstract

Extracellular single unit discharges of cerebellar Purkinje cells (P-cells) were recorded from the cerebellar hemispheres of two Japanese monkeys (Macaca fuscata) during spontaneous and visually guided eye movements. We found that saccade-related P-cells, whose simple-spike (SS) discharge rates were modulated in close correlation with saccadic eye movements, were localized in fairly restricted areas in the hemisphere, mostly in Crus IIa with some in the deep folia of Crus I. P-cells located in simple lobules, superficial folia of Crus I or in Crus IIp did not change their discharge rate during voluntary eye movements. Fifty-five saccade-related P-cells recorded from Crus I and II showed modulation of SS discharge rate related to both spontaneous and visually triggered saccades, with the modulation closely time-locked to the saccades. Two thirds (37/55) of saccade-related P-cells began to change their SS discharge rate 20-100 ms prior to the onset of saccades. The remaining one third (18/55) changed their activity approximately at the same time as the saccade onset. These saccade-related P-cells did not show changes in activity during smooth pursuit eye movements, and we did not find any P-cells in the cerebellar hemisphere which showed changes of activity preferentially during smooth pursuit eye movements. In about half (26/55) of the saccade-related P-cells, the pattern of modulation prior to and during saccades was biphasic: increase-decrease or decrease-increase. The other half (29/55) showed monophasic increases or decreases. For a given P-cell, the discharge pattern during saccades was similar for saccades of all directions, though there was a preferred direction in the amount of discharge rate modulation. The present findings suggest that the cerebellar hemisphere (Crus I and IIa) plays an important role in the control of voluntary saccadic eye movements, in addition to other cerebellar cortical areas (flocculus and posterior vermis) which are known to participate in the control of saccades.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cerebellum / cytology
  • Cerebellum / physiology*
  • Macaca
  • Male
  • Microelectrodes
  • Purkinje Cells / physiology*
  • Saccades / physiology*