Skip to main content
Log in

Antiepileptic Drugs in Non-Epilepsy Disorders

Relations between Mechanisms of Action and Clinical Efficacy

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Antiepileptic drugs (AEDs) are used extensively to treat multiple non-epilepsy disorders, both in neurology and psychiatry. This article provides a review of the clinical efficacy of AEDs in non-epilepsy disorders based on recently published preclinical and clinical studies, and attempts to relate this efficacy to the mechanism of action of AEDs and pathophysiological processes associated with the disorders. Some newer indications for AEDs have been established, while others are under investigation. The disorders where AEDs have been demonstrated to be of clinical importance include neurological disorders, such as essential tremor, neuropathic pain and migraine, and psychiatric disorders, including anxiety, schizophrenia and bipolar disorder.

Many of the AEDs have various targets of action in the synapse and have several proposed relevant mechanisms of action in epilepsy and in other disorders. Pathophysiological processes disturb neuronal excitability by modulating ion channels, receptors and intracellular signalling pathways, and these are targets for the pharmacological action of various AEDs. Attention is focused on the glutamatergic and GABAergic synapses.

In psychiatric conditions such as schizophrenia and bipolar disorder, AEDs such as valproate, carbamazepine and lamotrigine appear to have clear roles based on their effect on intracellular pathways. On the other hand, some AEDs, e.g. topiramate, have efficacy for nonpsychiatric disorders including migraine, possibly by enhancing GABAergic and reducing glutamatergic neurotransmission.

AEDs that seem to enhance GABAergic neurotransmission, e.g. tiagabine, valproate, gabapentin and possibly levetiracetam, may have a role in treating neurological disorders such as essential tremor, or anxiety disorders. AEDs with effects on voltage-gated sodium or calcium channels may be advantageous in treating neuropathic pain, e.g. gabapentin, pregabalin, carbamazepine, oxcarbazepine, lamotrigine and valproate.

Co-morbid conditions associated with epilepsy, such as mood disorders and migraine, may often respond to treatment with AEDs. Other possible disorders where AEDs may be of clinical importance include cancer, HIV infection, drug and alcohol abuse, and also in neuroprotection.

A future challenge is to evaluate the second-generation AEDs in non-epilepsy disorders and to design clinical trials to study their effects in such disorders in paediatric patients. Differentiation between the main mechanisms of action of the AEDs needs more consideration in drug selection for tailored treatment of the various non-epilepsy disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. Spina E, Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004; 6: 57–75

    PubMed  Google Scholar 

  2. Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 2004; 10: 685–92

    Article  PubMed  CAS  Google Scholar 

  3. Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004; 5: 553–64

    Article  PubMed  CAS  Google Scholar 

  4. Zaremba PD, Bialek M, Blasczcyk B, et al. Non-epilepsy uses of antiepilepsy drugs. Pharmacol Rep 2006; 58: 1–12

    Article  PubMed  CAS  Google Scholar 

  5. Golden AS, Haut S, Moshé SL. Nonepileptic uses of antiepileptic drugs in children and adolescents. Ped Neurol 2006; 34: 421–32

    Article  Google Scholar 

  6. Ettinger AB, Argoff CE. Use of antiepileptic drugs for nonepileptic conditions: psychiatric disorders and chronic pain. Neurotherapeutics 2007; 4: 75–83

    Article  PubMed  CAS  Google Scholar 

  7. Goodnick PJ. Anticonvulsants in the treatment of bipolar mania. Expert Opin Pharmacother 2006; 7: 401–10

    Article  PubMed  CAS  Google Scholar 

  8. Rogawski MA. Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res 2006; 68: 22–8

    Article  PubMed  Google Scholar 

  9. Perucca E. An introduction to antiepileptic drugs. Epilepsia 2005; 46 Suppl. 4: 31–7

    Article  Google Scholar 

  10. Stefan H, Lopes da Silva FH, Löscher W, et al. Epileptogenesis and rational therapeutic strategies. Acta Neurol Scand 2006; 113: 139–55

    Article  PubMed  CAS  Google Scholar 

  11. Ahmad S, Fowler LJ, Whitton PS. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res 2005; 63: 141–9

    Article  PubMed  CAS  Google Scholar 

  12. Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 2002; 16: 669–94

    Article  PubMed  Google Scholar 

  13. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (Eilat VII). Epilepsy Res 2004; 61: 1–48

    Article  PubMed  Google Scholar 

  14. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Eighth Eilat conference (Eilat VIII). Epilepsy Res 2007; 73: 1–52

    Article  PubMed  Google Scholar 

  15. Lydiard RB. The role of GABA in anxiety disorders. J Clin Psychiatry 2003; 64: 21–7

    PubMed  CAS  Google Scholar 

  16. Nemeroff CB. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull 2003; 37: 133–46

    PubMed  Google Scholar 

  17. Johannessen CU, Petersen D, Fonnum F, et al. The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Res 2001; 47: 247–56

    Article  PubMed  CAS  Google Scholar 

  18. Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006; 69: 273–94

    Article  PubMed  CAS  Google Scholar 

  19. Kralic JE, Criswell HE, Osterman JL, et al. Genetic essential tremor in gamma-aminobutyric acid A receptor alpha 1 subunit knockout mice. J Clin Invest 2005; 115: 584–6

    Article  Google Scholar 

  20. Jankovic J, Noebels JL. Genetic mouse models of essential tremor: are they essential? J Clin Invest 2005; 115: 774–9

    Article  Google Scholar 

  21. Pathwa R, Lyons KE. Essential tremor: differential diagnosis and current therapy. Am J Med 2003; 115: 134–42

    Article  Google Scholar 

  22. Cutrer FM, Moskowitz MA. The actions of valproate and neurosteroids in a model of trigeminal pain. Headache 1996; 36: 579–85

    Article  PubMed  CAS  Google Scholar 

  23. Yee BK, Keist R, von Boehmer L, et al. Schizophrenia-related sensorimotor deficit links alpha-3-containing GABAa receptors to a dopamine hyperfunction. Proc Natl Acad Sci 2005; 22: 102: 17154–9

    Article  PubMed  CAS  Google Scholar 

  24. Volk DW, Austin MC, Perri JN, et al. Decreased GAD67 mRNA expression in a subset of prefrontal cortical GABA neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57: 237–45

    Article  PubMed  CAS  Google Scholar 

  25. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26: 363–82

    Article  CAS  Google Scholar 

  26. Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–66

    Article  PubMed  CAS  Google Scholar 

  27. Kaminski RM, Banerjee M, Rogawski MA. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Neuropharmacology 2004; 46: 1097–104

    Article  PubMed  CAS  Google Scholar 

  28. Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 2006; 6: 108–13

    Article  PubMed  CAS  Google Scholar 

  29. Ueda Y, Doi T, Tokumaru J, et al. Effect of zonisamide on molecular regulation of glutamate and GABA transporter proteins during epileptogenesis in rats with hippocampal seizures. Mol Brain Res 2003; 116: 1–6

    Article  PubMed  CAS  Google Scholar 

  30. McQuay H, Caroll D, Jadad AR, et al. Anticonvulsant drugs for management of pain: a systematic review. BMJ 1995; 311: 1047–52

    Article  PubMed  CAS  Google Scholar 

  31. Coderre TJ, Kumar N, Lefebyre CD, et al. Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. J Neurochem 2005; 94: 1131–9

    Article  PubMed  CAS  Google Scholar 

  32. Yang RH, Xing JL, Duan JH, et al. Effects of gabapentin on spontaneous discharges and subthreshold membrane potential oscillation of type A neurons in injured DRG. Pain 2005; 116: 187–93

    Article  PubMed  CAS  Google Scholar 

  33. Cheng JK, Chiou LC. Mechanisms of the antinociceptive action of gabapentin. J Pharmacol Sci 2006; 100: 471–86

    Article  PubMed  CAS  Google Scholar 

  34. Tanabe M, Sakaue A, Takasu K, et al. Centrally mediated antihyperalgesic and antiallodynic effects of zonisamide following partial nerve injury in the mouse. Nauyn Schmiedebergs Arch Pharmacol 2005; 372: 107–14

    Article  CAS  Google Scholar 

  35. Imamura Y, Bennett GJ. Felbamate relieves several abnormal pain sensations in rats with an experimental peripheral neuropathy. J Pharmacol Exp Ther 1995; 275: 177–82

    PubMed  CAS  Google Scholar 

  36. Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylases is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–41

    Article  PubMed  CAS  Google Scholar 

  37. Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003; 38: 157–60

    Article  PubMed  CAS  Google Scholar 

  38. Bachmann RF, Schloesser RJ, Gould TD, et al. Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 2005; 32: 173–202

    Article  PubMed  CAS  Google Scholar 

  39. Shaltiel G, Shamir A, Shapiro J, et al. Valproate decreases inositol synthesis. Biol Psychiatry 2004; 56: 868–74

    Article  PubMed  CAS  Google Scholar 

  40. Evins AE, Demopulos C, Yovel I, et al. Inositol augmentation of lithium or valproate for bipolar depression. Bipolar Disord 2006; 8: 168–74

    Article  CAS  Google Scholar 

  41. Ju S, Greenberg ML. Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. Mol Microbiol 2003; 49: 1595–603

    Article  PubMed  CAS  Google Scholar 

  42. Williams RSB, Cheng L, Mudge AW, et al. A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292–6

    Article  PubMed  CAS  Google Scholar 

  43. Brunello N, Tascedda F. Cellular mechanisms and second messengers: relevance to the psychopharmacology of bipolar disorders. Int J Neuropsychopharmacol 2003; 6: 181–9

    Article  PubMed  CAS  Google Scholar 

  44. Lieb K, Treffurth Y, Hamke M, et al. Valproic acid inhibits substance P-induced activation of protein kinase C epsilon and expression of the substance P receptor. J Neurochem 2003; 86: 69–76

    Article  PubMed  CAS  Google Scholar 

  45. Chetcuti A, Adams LJ, Mitchell PB, et al. Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol 2005; 28: 1–10

    Google Scholar 

  46. Xie X, Hagan RM. Cellular and molecular actions of lamotrigine: possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology 1998; 38: 119–30

    Article  PubMed  CAS  Google Scholar 

  47. Sechi GP, Traccis S, Durelli L, et al. Carbamazepine versus diphenylhydantoin in the treatment of myotonia. Eur Neurol 1983; 22: 113–8

    Article  PubMed  CAS  Google Scholar 

  48. Rodrigues JP, Edwards DJ, Walters SE, et al. Gabapentin can improve postural stability and quality of life in primary orthostatic tremor. Mov Disord 2005; 20: 865–70

    Article  PubMed  Google Scholar 

  49. Keck PE, Strawn JR, McElroy LR. Pharmacologic treatment considerations in co-occurring bipolar and anxiety disorders. J Clin Psychiatry 2005; 67: 8–15

    Google Scholar 

  50. Zesiewicz TA, Elbe R, Louis ED, et al. Practice parameter: therapies for essential tremor. Report of the quality standards subcommittee of the American Academy of Neurology. Neurology 2005; 64: 2008–20

    CAS  Google Scholar 

  51. Eisenberg E, Shifrin A, Krivoy N. Lamotrigine for neuropathic pain. Expert Rev Neurother 2005; 5: 729–35

    Article  PubMed  CAS  Google Scholar 

  52. Lampl C, Katsarava Z, Diener HC, et al. Lamotrigine reduces migraine aura and migraine attacks in patients with migraine with aura. J Neurol Neurosurg Psychiatry 2005; 76: 1730–2

    Article  PubMed  CAS  Google Scholar 

  53. Premkumar TS, Pick J. Lamotrigine for schizophrenia. Cochrane Database Syst Rev 2006; (4): CD005962

    PubMed  Google Scholar 

  54. Nierneberg IA, Ostacher MJ, Calabrese JR, et al. Treatment-resistant bipolar depression: a STEP-BD equipoise randomized effectiveness trial of antidepressant augmentation with lamotrigine, inositol, or risperidone. Am J Psychiatr 2006; 163: 210–6

    Article  Google Scholar 

  55. Ondo WG, Jimenez JE, Vuong KD, et al. An open-label pilot study of levetiracetam for essential tremor. Clin Neuropharmacol 2004; 27: 274–7

    Article  PubMed  CAS  Google Scholar 

  56. Handforth A, Martin FC. Pilot efficacy and tolerability: a randomized, placebo-controlled trial of levetiracetam for essential tremor. Mov Disord 2004; 19: 1215–21

    Article  PubMed  Google Scholar 

  57. Bushara KO, Malik T, Exconde RE. The effect of levetiracetam on essential tremor. Neurology 2005; 64: 1078–80

    Article  PubMed  CAS  Google Scholar 

  58. Striano P, Coppola A, Vacca G, et al. Levetiracetam for cerebellar tremor in multiple sclerosis: an open-label pilot tolerability and efficacy study. Neurology 2006; 253: 762–6

    Article  Google Scholar 

  59. Drake ME, Greathouse NI, Armentbright AD, et al. Levetiracetam for preventive treatment of migraine [abstract]. Cephalalgia 2001;21: 373

    Google Scholar 

  60. Krusz JC. Levetiracetam as prophylaxis for resistant headaches [abstract]. Cephalalgia 2001; 21: 373

    Google Scholar 

  61. Magenta P, Arghetti S, Di Palma F, et al. Oxcarbazepine is effective and safe in the treatment of neuropathic pain: pooled analysis of seven clinical studies. Neurol Sci 2005; 26: 218–26

    Article  PubMed  CAS  Google Scholar 

  62. Raja M, Azzoni A. Oxcarbazepine vs. valproate in the treatment of mood and schizoaffective disorders. Int J Neuropsychopharmacol 2003; 6: 409–14

    CAS  Google Scholar 

  63. MacCleane GJ. Intravenous infusion of phenytoin relieves neuropathic pain: a randomized, double-blind, placebo-controlled, crossover study. Anesth Analg 1999; 89: 985–8

    Google Scholar 

  64. Mishory A, Yaroslavsky Y, Bersudsky Y, et al. Phenytoin as an antimanic anticonvulsant: a controlled study. Am J Psychiatry 2000; 157: 463–5

    Article  PubMed  CAS  Google Scholar 

  65. Applebaum J, Levine J, Belmaker RH. Intravenous fosphenytoin in acute mania. J Clin Psychiatry 2003; 64: 408–9

    Article  PubMed  CAS  Google Scholar 

  66. Pollack MH, Roy-Byrne PP, Van Ameringen M, et al. The selective GABA reuptake inhibitor tiagabine for the treatment of generalized anxiety disorder: results of a placebo-controlled study. J Clin Psychiatry 2005; 66: 1401–8

    Article  PubMed  CAS  Google Scholar 

  67. Van Ameringen M, Mancini C, Pipe B, et al. An open trial of topiramate in the treatment of generalized social phobia. J Clin Psychiatry 2004; 65: 1674–8

    Article  PubMed  Google Scholar 

  68. White HS. Molecular pharmacology of topiramate: managing seizures and preventing migraine. Headache 2005; 45: S48–56

    Article  PubMed  Google Scholar 

  69. Connor GS. A double-blind placebo-controlled trial of topiramate treatment for essential tremor. Neurology 2002; 59: 132–4

    Article  PubMed  CAS  Google Scholar 

  70. Sechi G, Agnetti V, Sulas FM, et al. Effects of topiramate in patients with cerebellar tremor. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1023–7

    Article  PubMed  CAS  Google Scholar 

  71. Mclntyre RS, Riccardelli R, Binder C, et al. Open-label adjunctive topiramate in the treatment of unstable bipolar disorder. Can J Psychiatry 2005; 50: 415–22

    Google Scholar 

  72. Bartolini M, Silvestrini M, Taffi R, et al. Efficacy of topiramate and valproate in chronic migraine. Clin Neuropharmacol 2005; 28: 277–9

    Article  PubMed  CAS  Google Scholar 

  73. Silberstein SD, Walter N, Schmitt J, et al. Topiramate in migraine prevention. Arch Neurol 2004; 61: 490–5

    Article  PubMed  Google Scholar 

  74. Tiihonen J, Halonen P, Wahlbeck K, et al. Topiramate add-on in treatment-resistant schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Psychiatry 2005; 66:1012–5

    Article  PubMed  CAS  Google Scholar 

  75. Johannessen CU, Johannessen SI. Valproate: past, present, and future. CNS Drug Rev 2003; 9: 199–216

    Article  PubMed  CAS  Google Scholar 

  76. Kochar DK, Rawat N, Agrawal RP, et al. Sodium valproate for painful diabetic neuropathy: a randomized double-blind placebo-controlled study. QJM 2004; 97: 33–8

    Article  PubMed  CAS  Google Scholar 

  77. Winterer G, Hermann WM. Valproate and the symptomatic treatment of schizophrenia spectrum patients. Pharmacopsychiatry 2000; 33: 182–8

    Article  PubMed  CAS  Google Scholar 

  78. Keck PE, McElroy SL, Tugrul KC, et al. Valproate oral loading in the treatment of acute mania. J Clin Psychiatry 1993; 54: 305–30

    PubMed  Google Scholar 

  79. Hirschfeld RMA, Baker JD, Wozniak P, et al. The safety and early efficacy of oral-loaded divalproex versus standard-titration divalproex, lithium, olanzapine, and placebo in the treatment of acute mania associated with bipolar disorder. J Clin Psychiatry 2003; 64: 841–6

    Article  PubMed  CAS  Google Scholar 

  80. Swann AC. Valproic acid: clinical efficacy and use in psychiatric disorders. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002: 828–36

    Google Scholar 

  81. Morita S, Miwa H, Kondo T. Effect of zonisamide on essential tremor: a pilot crossover study in comparison with arotinolol. Parkinsonism Relat Disord 2005; 11: 101–3

    Article  PubMed  Google Scholar 

  82. Sabra AF, Hallett M. Action tremor with altering activity in antagonist muscles. Neurology 1984; 34: 151–6

    Article  PubMed  CAS  Google Scholar 

  83. Yoshida S, Okada M, Zhu G, et al. Effects of zonisamide on neurotransmitter exocytosis asociated with ryanodine receptors. Epilepsy Res 2005; 67: 153–62

    Article  PubMed  CAS  Google Scholar 

  84. Lynch B, Lamberg N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci 2004; 101: 9861–6

    Article  PubMed  CAS  Google Scholar 

  85. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat conference (Eilat VII). Epilepsy Res 2002; 51: 31–71

    Article  PubMed  CAS  Google Scholar 

  86. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanisms of action of pregabalin: the calcium channel α2-δ (alpha-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 2007; 73: 137–50

    Article  PubMed  CAS  Google Scholar 

  87. Finnerup NB, Otto M, McQuay HJ, et al. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005; 118: 289–305

    Article  PubMed  CAS  Google Scholar 

  88. Schmidt D, Elger CE. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic drugs? Epilepsy Behav 2004; 5: 627–35

    Article  PubMed  Google Scholar 

  89. Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 2002; 5: 767–74

    PubMed  CAS  Google Scholar 

  90. Shannon HE, Eberle EL, Peters SC. Comparison of the effects of anticonvulsant drugs with diverse mechanisms of action in the formalin test in rats. Neuropharmacol 2005; 48: 1012–20

    Article  CAS  Google Scholar 

  91. Brill J, Lee M, Zhao S, et al. Chronic valproic acid treatment triggers increased neuropeptide Y expression and signalling in rat nucleus reticularis thalami. J Neurosci 2006; 26: 6813–22

    Article  PubMed  CAS  Google Scholar 

  92. Winkler I, Blotnik S, Shimshoni J, et al. Efficacy of antiepileptic isomers of valproic acid and valpromide in a rat model of neuropathic pain. Br J Pharmacol 2005; 146: 198–208

    Article  PubMed  CAS  Google Scholar 

  93. Winkler I, Sobol E, Yagen B, et al. Efficacy of antiepileptic tetramethylcyclopropyl analogues of valproic acid amides in a rat model of neuropathic pain. Neuropharmacol 2005; 49: 1110–20

    Article  CAS  Google Scholar 

  94. Bialer M. New antiepileptic drugs that are second generation to existing antiepileptic drugs. Expert Opin Investig Drugs 2006; 15: 637–47

    Article  PubMed  CAS  Google Scholar 

  95. Corbo J. The role of anticonvulsants in preventive migraine therapy. Curr Pain Headache 2003; 7: 63–6

    Article  Google Scholar 

  96. Erdemolu AK, Ozbakir S. Valproic acid in prophylaxis of refractory migraine. Acta Neurol Scand 2000; 102: 354–8

    Google Scholar 

  97. Landy S. Migraine throughout the life cycle: treatment through the ages. Neurology 2004; 62: S2–8

    Article  PubMed  CAS  Google Scholar 

  98. Czapinski P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Curr Top Med Chem 2005; 5: 3–14

    Article  PubMed  CAS  Google Scholar 

  99. Schechter PJ. Clinical pharmacology of vigabatrin. Br J Clin Pharmacol 1989; 27: 19–22S

    Article  Google Scholar 

  100. Preece NE, Jackson GD, Houseman JA, et al. Nuclear magnetic resonance detection of increased GABA in vigabatrin-treated rats in vivo. Epilepsia 1994; 35: 431–6

    Article  PubMed  CAS  Google Scholar 

  101. Czuczwar SJ, Patsalos PN. The new generation of GABA enhancers: potential in the treatment of epilepsy. CNS Drugs 2001; 15: 339–50

    Article  PubMed  CAS  Google Scholar 

  102. Kälviäinen R, Nousiainen I. Visual field defects with vigabatrin: epidemiology and therapeutic implications. CNS Drugs 2001; 15: 217–30

    Article  PubMed  Google Scholar 

  103. Sills GJ, Patsalos PN, Butler E, et al. Visual field constriction: accumulation of vigabatrin but not tiagabine in the retina. Neurology 2001; 57: 196–200

    Article  PubMed  CAS  Google Scholar 

  104. Krauss GL, Johnson MA, Sheth S, et al. A controlled study comparing visual function in patients treated with vigabatrin and tiagabine. J Neurosurg Psychiatry 2003; 74: 339–43

    Article  CAS  Google Scholar 

  105. Johannessen CU. Mechanisms of action of valproate: a commentatory. Neurochem Int 2000; 37: 103–10

    Article  PubMed  CAS  Google Scholar 

  106. Johannessen CU, Johannessen SI. An update on valproate: clinical implications of recent studies for its mechanisms of action (SIIC 2004) [online]. Available from URL: http://www.siicsalud.com/dato/dat038/04707003.htm [Accessed 2007 Sep 17]

  107. Rudolph U, Möhler H. GABA-based therapeutic approaches: GABAa receptor subtype functions. Current Opin Pharmacol 2006; 6: 18–23

    Article  CAS  Google Scholar 

  108. Bennett S, Gronier B. Modulation of striatal dopamine release in vitro by agonists of the glycine B site of NMDA receptors: interaction with antipsychotics. Eur J Pharmacol 2005; 527: 52–9

    Article  PubMed  CAS  Google Scholar 

  109. Hosak L, Libiger J. Antiepileptic drugs in schizophrenia: a review. Eur Psychiatry 2002; 17: 371–8

    Article  PubMed  CAS  Google Scholar 

  110. Göttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–78

    Article  PubMed  Google Scholar 

  111. Anmann B, Grunze H. Neurochemical underpinnings in bipolar disorder and epilepsy. Epilepsia 2005; 46Suppl. 4: 26–30

    Article  Google Scholar 

  112. Greene JG. Gene expression profiles of brain dopamine neurons and relevance to neuropsychiatric disease. J Physiol 2006; 575: 411–6

    Article  PubMed  CAS  Google Scholar 

  113. Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49

    PubMed  CAS  Google Scholar 

  114. Rogawski M. Astrocytes get in the act in epilepsy. Nat Med 2005; 11: 919–20

    Article  PubMed  CAS  Google Scholar 

  115. Guo-Feng T, Hooman A, Takano T, et al. An astrocytic basis of epilepsy. Nat Med 2005; 11: 973–81

    Google Scholar 

  116. Harwood AJ, Agam G. Search for a common mechanism of mood stabilizers. Biochem Pharmacol 2003; 66: 179–89

    Article  PubMed  CAS  Google Scholar 

  117. Cordeiro ML, Gundersen CB, Umbach JA. Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 Cells. Neuropsychopharmacol 2004; 29: 39–44

    Article  CAS  Google Scholar 

  118. Owens MJ, Nemeroff CB. Pharmacology of valproate. Psychopharmacol Bull 2003; 37: 17–24

    PubMed  Google Scholar 

  119. Arban R, Maraia G, Brackenborough K, et al. Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res 2005; 158: 123–32

    Article  PubMed  CAS  Google Scholar 

  120. Ketter TA, Manji HK, Post RM. Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J Clin Psychopharmacol 2003; 23: 484–95

    Article  PubMed  CAS  Google Scholar 

  121. Muzina DJ, Elhaj O, Gajwani P, et al. Lamotrigine and antiepileptic drugs as mood stabilizers in bipolar disorder. Acta Psychiatr Scand 2005; 111: 21–8

    Article  Google Scholar 

  122. Selai C, Bannister D, Trimble M. Antiepileptic drugs and the regulation of mood and quality of life (QOL): the evidence from epilepsy. Epilepsia 2005; 46 Suppl. 4: 50–7

    Article  Google Scholar 

  123. Berudsky Y. Phenytoin: an anti-bipolar anticonvulsant? Int J Neuropsychopharmacol 2006; 9: 627–8

    Article  CAS  Google Scholar 

  124. Gajwani P, Forsthoff A, Muzina D, et al. Antiepileptic drugs in mood-disordered patients. Epilepsia 2005; 46Suppl. 4: 38–44

    Article  PubMed  CAS  Google Scholar 

  125. Silberstein SD. Shared mechanisms and comorbidities in neurologic and psychiatric disorders. Headache 2001; 41: S11–7

    Article  PubMed  Google Scholar 

  126. Prueter C, Norra C. Mood disorders and their treatment in patients with epilepsy. J Neuropsychiatry Clin Neurosci 2005; 17: 20–8

    Article  PubMed  Google Scholar 

  127. Ettinger AB, Reed ML, Goldberg JL, et al. Prevalence of bipolar symptoms in epilepsy vs other chronic health disorders. Neurology 2005; 65: 535–40

    Article  PubMed  Google Scholar 

  128. Schmitz B. Depression and mania in patients with epilepsy. Epilepsia 2005; 46 Suppl. 4: 45–9

    Article  Google Scholar 

  129. Kanner AM. Depression in epilepsy: a neurobiological perspective. Epilepsy Curr 2005; 5: 21–7

    Article  PubMed  Google Scholar 

  130. Ettinger AB, Kustra RP, Hammer AE. Effect of lamotrigine on depressive symptoms in adult patients with epilepsy. Epilepsy Behav 2007; 10: 148–54

    Article  PubMed  Google Scholar 

  131. Jobe PC. Shared mechanisms of antidepressant and antiepileptic treatments: drugs and devices. Clin EEG Neurosci 2004; 35: 25–37

    PubMed  Google Scholar 

  132. Jobe PC. Affective disorder and epilepsy comorbidity: implications for development of treatments, preventions and diagnostic approaches. Clin EEG Neurosci 2004; 35: 53–68

    PubMed  Google Scholar 

  133. Ottman R, Lipton RB. Comorbidity of migraine and epilepsy. Neurology 1994; 44: 2105–10

    Article  PubMed  CAS  Google Scholar 

  134. Bigal ME, Lipton RB, Cohen J, et al. Epilepsy and migraine. Epilepsy Behav 2003; 4: S13–24

    Article  PubMed  Google Scholar 

  135. Sechi G, Cocco GA, D’Onofrio M, et al. Disfluent speech in patients with partial epilepsy: beneficial effect of levetiracetam. Epilepsy Behav 2006; 9: 521–3

    Article  PubMed  Google Scholar 

  136. Applebaum J, Gayduk J, Agam G, et al. Valnoctamide as a valproate substitute with low teragenic potential: double-blind controlled clinical trial. Bipolar Disord 2005; 7: 27–117

    Article  Google Scholar 

  137. Henry TR. The history of valproate in clinical neuroscience. Psychopharmacol Bull 2003; 37: 5–16

    PubMed  Google Scholar 

  138. Yeow WS, Ziauddin MF, Maxhimer JB, et al. Potentiation of the anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the kinase inhibitor Staurosporine or its clinically relevant analogue UCN-01. Br J Cancer 2006; 22: 1436–45

    Article  CAS  Google Scholar 

  139. Eyal S, Yagen B, Shimshoni J, et al. Histone deacetylases inhibition and tumor cells cytotoxicity by CNS-active constitutional isomers and derivatives. Biochem Pharmacol 2005; 69: 1501–8

    Article  PubMed  CAS  Google Scholar 

  140. Eyal S, Lamb J, Smith-Yockman M, et al. The antiepileptic and chemotherapeutic agent valproic acid induces P-glycoprotein in human tumor cell lines and in rat liver. Br J Pharmacol 2006; 149: 250–60

    Article  PubMed  CAS  Google Scholar 

  141. Peixoto MF, Abilio VC, Silva RH, et al. Effects of valproic acid on an animal model of tardive dyskinesia. Behav Brain Res 2003; 142: 229–33

    Article  PubMed  CAS  Google Scholar 

  142. Myrick H, Malcolm R, Anton R. The use of antiepileptics in the treatment of addictive disorders. Prim Psychiatry 2003; 10: 59–63

    Google Scholar 

  143. Johnson BA, Ait-Daoud N, Bowden CL, et al. Oral topiramate for treatment of alcohol dependence: a randomized controlled trial. Lancet 2003; 361: 1677–85

    Article  PubMed  CAS  Google Scholar 

  144. Vocci FJ, Elkashef A. Pharmacotherapy and other treatments for cocaine abuse and dependence. Curr Opin Psychiatry 2005; 18: 265–70

    Article  PubMed  Google Scholar 

  145. Brodie JD, Figuerosa E, Laska EM, et al. Safety and efficacy of gamma-vinyl GABA (GVG) for the treatment of metham-phetamine and/or cocaine addiction. Synapse 2005; 55: 122–5

    Article  PubMed  CAS  Google Scholar 

  146. Brown ES, Perantie DC, Dhanani N, et al. Lamotrigine for bipolar disorder and comorbid cocaine dependence: a replication and extension study. J Affect Disord 2006; 93: 219–22

    Article  PubMed  CAS  Google Scholar 

  147. Hoopes SP, Reimherr FW, Hedges DW, et al. Treatment of bulimia nervosa with topiramate in a randomized, double-blind, placebo-controlled trial (Pt 1): improvement in binge and purge measures. J Clin Psych 2003; 64: 1335–41

    Article  CAS  Google Scholar 

  148. Nickel C, Tritt K, Muehlbacher M, et al. Topiramate treatment in bulimia nervosa patients: a randomized, double-blind, placebo-controlled trial. Int Eat Disord 2005; 38: 295–300

    Article  Google Scholar 

  149. Lomia M, Tchelidze T, Pruidze M. Bronchial asthma as neurogenic paroxysmal inflammatory disease: a randomized trial with carbamazepine. Respir Med 2006; 100: 1988–96

    Article  PubMed  CAS  Google Scholar 

  150. Costa C, Martella G, Picconi B, et al. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke 2006; 37: 1319–26

    Article  PubMed  CAS  Google Scholar 

  151. Wallis RA, Panizzon KL, Niquet J, et al. Neuroprotective effects of the anticonvulsant, fluorofelbamate [abstract]. Epilepsia 2000; 41: 162–3

    Article  Google Scholar 

  152. Dou H, Birusingh K, Faraci J, et al. Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci 2003; 23: 9162–70

    PubMed  CAS  Google Scholar 

  153. De Paulis T. ONO-2506. Curr Opin Invest Drug 2003; 4: 863–7

    Google Scholar 

Download references

Acknowledgements

I am grateful to Dr Svein I. Johannessen for his helpful advice and discussions during the preparation of this manuscript. No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilie Johannessen Landmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landmark, C.J. Antiepileptic Drugs in Non-Epilepsy Disorders. CNS Drugs 22, 27–47 (2008). https://doi.org/10.2165/00023210-200822010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200822010-00003

Keywords

Navigation