Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Clozapine

  • Review Article
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The introduction of clozapine has given clinicians a unique agent for treating patients with schizophrenia that is refractory to other neuroleptics. Despite its efficacy, the drug continues to be prescribed with trepidation due to the incidence of agranulocytosis. This article reviews the pharmacokinetic and pharmacological properties of clozapine and the clinical implications for monitoring plasma concentrations.

Various assays have been developed for clozapine that include gas-liquid chromatography, radioimmunoassay and high performance liquid chromatography. Only a few studies have examined the pharmacokinetics of clozapine in patients with schizophrenia. These studies have revealed a wide interpatient variability in pharmacokinetic parameters that include: time to reach peak plasma concentrations 1.1 to 3.6h; elimination half-life 9.1 to 17.4h; clearance 8.7 to 53.3 L/h; and a volume of distribution of 1.6 to 7.3 L/kg. Clozapine is metabolised via the hepatic microsomal enzyme system into 2 principle metabolites: demethyl-clozapine and clozapine N-oxide. Urine samples have reported the ratio of clozapine: demethyl: N-oxide to be 1: 1: 2. The Clozapine N-oxide binding affinity with 3H-haloperidol was 4 times lower than clozapine and its conversion back to clozapine is hypothesised. Although the exact pharmacological mechanism of action of clozapine is not fully understood, the drug does possess significant binding affinity for different dopamine receptors, with recent evidence supporting binding to the D4 receptor subtype.

Clozapine transiently increases serum prolactin levels with minimal changes in homovanillic acid plasma levels. Limited studies investigating the relationship between clinical response and plasma clozapine concentrations have investigated the range between 100 and 800 µg/L. In the treatment of patients with refractory schizophrenia, a minimum concentration of 350 µg/L was suggested as needed. The occurrence of agranulocytosis could have a genetic basis and patients should be rigorously monitored during treatment. The incidence of tardive dyskinesia and extrapyramidal side effects is minimal. Clozapine can lower the seizure threshold in a dose- and time-dependent manner. Careful patient selection and monitoring are required when clozapine therapy is used in patients with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackenheil M. Clozapine: pharmacokinetic investigations and biochemical effects. Psychopharmacology 99: S32–S37, 1989

    Article  PubMed  Google Scholar 

  • Ackenheil M, Bräu H, Burkhart A, Franke A, Pacha W. Antipsychotic efficacy in relation to plasma concentrations of clozapine. Arzneimittel-Forschung 26: 1156–1158, 1976

    PubMed  CAS  Google Scholar 

  • Ad Hoc Committee on Schizophrenia. Report on schizophrenia of the American College of Neuropsychopharmacology. Neuropsychopharmacology 1: 89–99, 1987

    Article  Google Scholar 

  • Barnas C, Zwierzina H, Hummer M, Fleischhackler WW. GMCSF treatment of clozapine induced agranulocytosis: a case. Biological Psychiatry 29: 673S, 1991

    Google Scholar 

  • Bickel MH. The pharmacology and biochemistry of N-oxides. Pharmacological Reviews 21: 325–355, 1969

    PubMed  CAS  Google Scholar 

  • Birmaher B, Baker R, Kapur S, Quintana H, Ganguli R. Clozapine for the treatment of adolescents with schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry 31: 160–164, 1992

    Article  PubMed  CAS  Google Scholar 

  • Bischoff S, Heinrich M, Sonntag JM, Krauss J. The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin receptors. European Journal of Pharmacology 129: 367–370, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bondesson U, Lindström LH. Determination of clozapine and its N-demethylated metabolite in plasma by use of gas chromatography-mass spectrometry with single ion detection. Psychopharmacology 95: 472–475, 1988

    Article  PubMed  CAS  Google Scholar 

  • Bräu H, Burkhart A, Pacha W, Ackenheil M. Relationship between effects and plasma concentrations of clozapine. Arzneimittel-Forschung 29: 1300, 1978

    Google Scholar 

  • Breyer U, Villumsen K. Measurement of plasma concentrations of tricyclic psychoactive drugs and their metabolites by UV reflectance photometry of thin layer chromatography. European Journal of Clinical Pharmacology 9: 457–465, 1976

    Article  CAS  Google Scholar 

  • Canton H, Verriele L, Colpert FC. Binding of typical and atypical antipsychotics to 5-HT-1C and 5-HT-2 sites: clozapine potently interacts with 5-HT-1C sites. European Journal of Pharmacology 191: 93–96, 1990

    Article  PubMed  CAS  Google Scholar 

  • Casey DE. Clozapine: neuroleptic induced EPS and tardive dyskinesia. Psychopharmacology 99: S47–S53, 1989

    Article  PubMed  Google Scholar 

  • Chang WH, Chen TY, Yeh EK. Time-response curves of homovanillic acid in caudate and prefrontal cortex following acute neuroleptic administration. Psychopharmacology 93: 403–404, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cheng YF, Lundberg T, Bondesson U, Lindstrom L, Gabrielsson J. Clinical pharmacokinetics of clozapine in schizophrenic patients. European Journal of Clinical Pharmacology 34: 445–449, 1988

    Article  PubMed  CAS  Google Scholar 

  • Choc MG, Hsuan F, Honigfeld G, Robinson WT, Ereshefsky L, et al. Single vs multiple dose pharmacokinetics of clozapine in psychiatric patients. Pharmaceutical Research 7: 347–351, 1990

    Article  PubMed  CAS  Google Scholar 

  • Choc MG, Lehr RG, Hsuan F, Honigfeld G, Smith HT, et al. Multiple dose pharmacokinetics of clozapine in patients. Pharmaceutical Research 4: 402–405, 1987

    Article  PubMed  CAS  Google Scholar 

  • Claas FHJ. Drug-induced agranulocytosis: review of possible mechanisms and prospects for clozapine studies. Psychopharmacology 99: S113–S117, 1989

    Article  PubMed  Google Scholar 

  • Clark D, White FJ. Review: D-1 dopamine receptor — the search for a function. Synapse 1: 347–388, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cold JA, Wells BG, Froemming JH. Seizure activity associated with antipsychotic therapy. Drug Intelligence and Clinical Pharmacy 24: 601–606, 1990

    CAS  Google Scholar 

  • Dahl SG, Edvardsen O, Syke I. Molecular dynamics of dopamine at the D-2 receptor. Proceedings of the National Academy of Sciences of the United States of America 88: 8111–8115, 1991

    Article  PubMed  CAS  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, et al. Molecular cloning and expression of the gene for a human D-1 dopamine receptor. Nature 347: 72–75, 1990

    Article  PubMed  CAS  Google Scholar 

  • Devinsky O, Honigfeld G, Patin J. Clozapine-related seizures. Neurology 41: 369–371, 1991

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, et al. Positron emission tomography analysis of central D-1 and D-2 dopamine receptor occupancy in patients with classical neuroleptics and clozapine. Archives of General Psychiatry 49: 538–544, 1992

    Article  PubMed  CAS  Google Scholar 

  • Fischer V, Vogels B, Maurer G, Tynes RE. The antipsychotic clozapine is metabolised by the polymorphic human microsomal and recombinant cytochrome P450 2D6. Journal of Pharmacology and Experimental Therapeutics 260: 1355–1360, 1992

    PubMed  CAS  Google Scholar 

  • Farde L, Weisel FA, Halldin C, Sedvall G. Central D-2 dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Archives of General Psychiatry 45: 71–76, 1988

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Nordstrom AL, Sedvall G. D-1 and D-2 dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99: S28–S31, 1989

    Article  PubMed  Google Scholar 

  • Fitton A, Heel RC. Clozapine: a review of its pharmacological properties and therapeutic use in schizophrenia. Drugs 40: 722–747, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gauch R, Michaelis W. The metabolism of 8-chloro-11-(4-methyll-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine (clozapine) in mice, dogs and human subjects. Farmaco 26: 667–681, 1971

    CAS  Google Scholar 

  • Giros B, Sokoloff P, Martes MP, Riou JF, Emorine LJ, et al. Alternative splicing directs the expression of two D-2 dopamine receptor isoforms. Nature 342: 923–929, 1989

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA. Serotonin receptors: clinical implications. Neuroscience and Biobehavioral Reviews 14: 35–47, 1990

    Article  PubMed  CAS  Google Scholar 

  • Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41: 1–24, 1991

    Article  PubMed  CAS  Google Scholar 

  • Green AI, Salzman AC, Schatzberg AF, Schildkraut JJ. Plasma HVA and response to clozapine. Biological Psychiatry 29: 410S, 1991

    Google Scholar 

  • Grohmann R, Schmidt LG, Spiel-Kiefer C, Rüther E. Agranulocytosis and significant leucopenia with neuroleptic drugs: results from the AUMP program. Psychopharmacology 99: S109–S112, 1989

    Article  PubMed  Google Scholar 

  • Gu NF. Pharmacokinetic study of clozapine. Chung-Hua Shen Ching Ching Shen Ko Tsa Chih 21: 259–262, 1988

    CAS  Google Scholar 

  • Haller E, Binder RL. Clozapine and seizures. American Journal of Psychiatry 147: 1069–1071, 1990

    PubMed  CAS  Google Scholar 

  • Haring C, Barnas C, Saria A, Humpel C, Fleischhackler WW. Dose-related plasma concentrations of clozapine. Journal of Clinical Psychopharmacology 9: 71–72, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Haring C, Fleischhackler WW, Schett P, Humpel C, Barnas C, et al. Influence of patient related variables on clozapine plasma concentrations. American Journal of Psychiatry 147: 1471–1475, 1990

    PubMed  CAS  Google Scholar 

  • Haring C, Humpel C, Auer B, Saria A, Barnas C, et al. Clozapine plasma concentrations determined by high performance liquid chromatography with ultraviolet detection. Journal of Chromatography — Biomedical Applications 428: 160–166, 1988

    Article  PubMed  CAS  Google Scholar 

  • Haring C, Meise U, Humpel C, Saria A, Fleischhacker WW, et al. Dose-related plasma concentrations of clozapine: influence of smoking behavior, sex, and age. Psychopharmacology 99: S38–S40, 1989a

    Article  PubMed  Google Scholar 

  • Haring C, Schweitzer J, Neudorfer C, Schett P, Hummer M, et al. Influence of clozapine on EEG. Biological Psychiatry 29: 422S, 1991

    Google Scholar 

  • Heipertz R, Pilz H, Beckers W. Serum concentrations of clozapine determined by nitrogen selective gas chromatography. Archives of Toxicology 37: 313–318, 1977

    Article  PubMed  CAS  Google Scholar 

  • Hippius H. The history of clozapine. Psychopharmacology 99: S3–S5, 1989

    Article  PubMed  Google Scholar 

  • Hubbard JW, Cooper JK, Hawes EM, Jenden DJ, May PRA, et al. Therapeutic monitoring of chlorpromazine: I. Pitfalls in plasma analysis. Therapeutic Drug Monitoring 7: 222–228, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hummer M, Kurz M, Barnas C, Hinterhuber H, Fleischhackler WW. First analysis of a prospective clozapine drug monitoring study. Biological Psychiatry 29: 671S, 1991

    Article  Google Scholar 

  • Humpel C, Haring C, Saria A. Rapid and sensitive determination of clozapine in human plasma using high-performance liquid chromatography and amperometric detection. Journal of Chromatography — Biomedical Applications 491: 235–239, 1989

    Article  PubMed  CAS  Google Scholar 

  • Jann MW. Clozapine. Pharmacotherapy 11: 179–195, 1991

    PubMed  CAS  Google Scholar 

  • Juul Povlsen U, Noring U, Fog R, Gerlach J. Tolerability and therapeutic effect of clozapine. Acta Psychiatrica Scandinavica 71: 176–185, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kane JM, Cooper TB, Sachar EJ, Halpern FS, Bailine S. Clozapine: plasma concentrations and prolactin response. Psychopharmacology 73: 184–187, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kane JM, Honigfeld G, Singer J, Meitzer HY, Clozaril Study Group. Clozapine for the treatment-resistant schizophrenic. Archives of General Psychiatry 45: 789–796, 1988

    Article  PubMed  CAS  Google Scholar 

  • Klein HE, Ruther E, Ackenheil M, Nedopil N. Plasma concentration vs clinical and biochemical effects of thioridazine, clozapine, benperidol, penfluridol in acutely schizophrenic patients. In Usdin et al. (Eds) Phenothiazine and structurally related drugs, Vol. 7, pp. 195–202, Elsevier, New York, 1980

    Google Scholar 

  • Krupp P, Barnes P. Leponex-associated granulocytosis: review of the situation. Psychopharmacology 99: S118–S121, 1989

    Article  PubMed  Google Scholar 

  • Langer G, Sacher EJ, Gruen PH, Halpern FS. Human prolactin responses to neuroleptic drugs correlate with antischizophrenic potency. Nature 266: 639–640, 1977

    Article  PubMed  CAS  Google Scholar 

  • Leon CA. Therapeutic effects of clozapine. Acta Psychiatrica Scandinavica 59: 471–480, 1979

    Article  PubMed  CAS  Google Scholar 

  • Levinson B. Clozapine overdosage. South African Medical Journal 49: 5, 1975

    PubMed  CAS  Google Scholar 

  • Lewis MH, Widerlov E, Knight DL, Kilts CD, Mailman RB. N-oxides of phenothiazine antipsychotics: effects on in vivo and in vitro estimates of dopaminergic function. Journal of Pharmacology and Experimental Therapeutics 225: 539–545, 1983

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Johns CA, Kane JM, Rai K, Pisciotta AV, et al. Clozapine-induced agranulocytosis: non-cross-reactivity with other psychotropic drugs. Journal of Clinical Psychiatry 49: 271–277, 1988

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Saltz BL, Johns CA, Pollack S, Kane JM. Clozapine in tardive dyskinesia. Psychopharmacology Bulletin 25: 57–62, 1989

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Yunis J, Egea E, Canoso RT, Kane JM, et al. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Archives of General Psychiatry 47: 945–948, 1990

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom LH. The effect of long-term treatment with clozapine in schizophrenia: a retrospective study in 96 patients treated with clozapine for up to 13 years. Acta Psychiatrica Scandinavica S45: 1–6, 1987

    Google Scholar 

  • Lovdahl MJ, Perry PJ, Miller DD. The assay of clozapine and N-desmethylclozapine in human plasma by high performance liquid chromatography. Therapeutic Drug Monitoring 13: 69–72, 1991

    Article  PubMed  CAS  Google Scholar 

  • Marder SR, Van Putten T. Who should receive clozapine? Archives of General Psychiatry 45: 865–867, 1988

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Mansour A. Expression of the dopamine D-2 receptor gene in brain. Biological Psychiatry 30: 985–1007, 1991

    Article  PubMed  CAS  Google Scholar 

  • Meitzer HY. The mechanism of action of novel antipsychotic drugs. Schizophrenia Bulletin 17: 263–287, 1991

    Google Scholar 

  • Meitzer HY, Goode DJ, Scheyve PM, Young M, Fang VS. Effect of clozapine on human serum prolactin concentrations. American Journal of Psychiatry 136: 1550–1555, 1979

    Google Scholar 

  • Meier J. Bioanalytical assay of clozapine and its N-oxide metabolite and the determination of their blood concentrations in the dog. British Journal of Pharmacology 53: 440P, 1975

    PubMed  CAS  Google Scholar 

  • Miller DD. Effect of Phenytoin on plasma clozapine concentration in two patients. Journal of Clinical Psychiatry 52: 23–25, 1991

    PubMed  CAS  Google Scholar 

  • Norris DL, Israelstam K. Clozapine overdosage. South African Medical Journal 49: 385, 1975

    PubMed  CAS  Google Scholar 

  • Pall H, Kleinberger G, Kotzaurek R, Pichler M, Szeless S. Severe intoxication with Leponex® and its intensive treatment. Wiener Klinische Wochenschrift 88: 179–181, 1976

    PubMed  CAS  Google Scholar 

  • Peacock L, Gerlach J. A survey of clozapine treatment. Biological Psychiatry 29: 668S, 1991

    Google Scholar 

  • Perry PJ, Miller DD, Arndt SV, Cadoret RJ. Clozapine and nor-clozapine plasma concentrations and clinical response of treatment refractory schizophrenic patients. American Journal of Psychiatry 148: 231–235, 1991

    PubMed  CAS  Google Scholar 

  • Pickar D, Owen RR, Litman Re, Konicki PE, Gutierrez R, et al. Clinical and biologic response to clozapine in patients with schizophrenia. Archives of General Psychiatry 49: 345–353, 1992

    Article  PubMed  CAS  Google Scholar 

  • Potter WZ, Ko GN, Zhang LD, Yan W. Clozapine in China: a review and preview of US/PRC collaboration. Psychopharmacology 99: S87–S91, 1989

    Article  PubMed  Google Scholar 

  • Richelson E. Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. Journal of Clinical Psychiatry 45: 331–336, 1984

    PubMed  CAS  Google Scholar 

  • Richter K. Determination of clozapine in human serum by capillary gas chromatography. Journal of Chromatography 434: 465–468, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rosenthaler J, Nimmerfall F, Sigrist R, Munzer H. Non-equilibrium method for the radioimmunoassay of clozapine in the presence of metabolites. European Journal of Biochemistry 80: 603–609, 1977

    Article  PubMed  CAS  Google Scholar 

  • Safferman A, Lieberman JA, Kane JM, Szymanski S, Kinon B. Update on the clinical efficacy and side effects of clozapine. Schizophrenia Bulletin 17: 247–261, 1991

    PubMed  CAS  Google Scholar 

  • Schmutz J. Some reflections on molecular structure and biological activity of tricyclic neuroleptics. In Usdin et al. (Eds) Phenothiazines and structurally related drugs, Vol. 7, pp. 3–11, Elsevier, New York, 1980

    Google Scholar 

  • Schuster P, Gabriel E, Küfferle B, Strobel G, Karobath M. Reversal by physostigmine of clozapine-induced delirium. Clinical Toxicology 10: 437–441, 1977

    Article  PubMed  CAS  Google Scholar 

  • Sedvall G. PET imaging of dopamine receptors in human basal ganglia: relevance to mental illness. Trends in Neuroscience 13: 302–308, 1990

    Article  CAS  Google Scholar 

  • Sheiner LB, Benet LZ. Premarketing observational studies of population pharmacokinetics of new drugs. Clinical Pharmacology and Therapeutics 38: 481–487, 1985

    Article  PubMed  CAS  Google Scholar 

  • Simpson GM, Cooper TA. Clozapine plasma concentrations and convulsions. American Journal of Psychiatry 135: 99–100, 1978

    PubMed  CAS  Google Scholar 

  • Small JG, Milstein V, Marhenke JD, Hall DD, Kellams JJ. Treatment outcome with clozapine in tardive dyskinesia, neuroleptic sensitivity and treatment resistant psychosis. Journal of Clinical Psychiatry 48: 263–267, 1987

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martes MP, Bouthenet ML, Schwartz JC. Molecular cloning and characterization of a novel dopamine receptor D-3 as a target for neuroleptics. Nature 347: 146–151, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BP, Seeman P, Laurier LG, et al. Cloning of the gene for a human dopamine D-5 receptor with a higher affinity for dopamine than D-1. Nature 350: 614–619, 1991

    Article  PubMed  CAS  Google Scholar 

  • Szymanski S, Lieberman JL, Picou D, Masiar S, Cooper T. A case report of Cimetidine induced clozapine toxicity. Journal of Clinical Psychiatry 52: 21–22, 1991

    PubMed  CAS  Google Scholar 

  • Thorp M, Pog R. Clozapine treatment of schizophrenic patients. Acta Psychiatrica Scandinavica 55: 123–126, 1977

    Article  Google Scholar 

  • Tiihonen J, Hakola P, Nousianen U, Leinonen E, Tuunainen A, et al. EEG abnormalities associated with clozapine treatment. Biological Psychiatry 29: 676S, 1991

    Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, et al. Cloning of the gene for a human dopamine D-4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614, 1991

    Article  PubMed  Google Scholar 

  • Wander TJ, Nelson A, Okazaki H, Richelson E. Antagonism by neuroleptics of serotonin 5-HT-1A and 5-HT-2 receptors of normal human brain in vitro. European Journal of Pharmacology 143: 279–282, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wiesel FA, Farde L, Nordstrom AL, Sedvall G. Central D-1 and D-2 receptor occupancy during antipsychotic treatment. Progress in Neuropsychopharmacology and Biological Psychiatry 14: 759–767, 1990

    Article  CAS  Google Scholar 

  • Wilhelm D, Kemper A. High-performance liquid chromatography procedure for the determination of clozapine, haloperidol, droperidol, and several benzodiazepines in plasma. Journal of Chromatography 525: 218–224, 1990

    Article  PubMed  CAS  Google Scholar 

  • Wyatt RJ. Biochemistry and schizophrenia (part IV): the neuroleptics — their mechanism of action: a review of the biochemical literature. Psychopharmacology Bulletin 2: 5–50, 1976

    Google Scholar 

  • Zeren W, Minglian L, Peipei X, Yanlin Z, Yanlia Z. Determination of clozapine and its metabolites in serum and urine by reverse phase HPLC. Biomedical Chromatography I: 53–57, 1986

    Article  Google Scholar 

  • Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HM, et al. Cloning and expression of human and rat D-1 dopamine receptors. Nature 347: 75–80, 1990

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jann, M.W., Grimsley, S.R., Gray, E.C. et al. Pharmacokinetics and Pharmacodynamics of Clozapine. Clin. Pharmacokinet. 24, 161–176 (1993). https://doi.org/10.2165/00003088-199324020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199324020-00005

Keywords

Navigation