Skip to main content
Log in

Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Connectivity is the key to understanding distributed and cooperative brain functions. Detailed and comprehensive data on large-scale connectivity between primate brain areas have been collated systematically from published reports of experimental tracing studies. Although the majority of the data have been made easily available for online retrieval, the multiplicity of brain maps and the precise requirements of anatomical naming limit the intuitive access to the data. The quality of data retrieval can be improved by observing a small set of conventions in data representation. Standardized interfaces open up further opportunities for automated search and retrieval, for flexible visualization of data, and for interoperability with other databases. This article provides a discussion and examples in text and image of the capabilities of the online interface to the CoCoMac database of primate connectivity. These serve to point out sources of potential confusion and failure, and to demonstrate the automated interfacing with other neuroinformatics resources that facilitate selection and processing of connectivity data, for example, for computational modelling and interpretation of functional imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H. B., and Zilles, K. (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341.

    Article  CAS  Google Scholar 

  • Backhaus, K., Erichson, B., Plinke, W., and Weiber, R. (1996) Multivariate Analysemethoden, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Bowden, D. M. and Dubach, M. (2002) NeuroNames (2002) Neuroinformatics 1, 43–59.

    Article  Google Scholar 

  • Brodmann, K. (1905) Beiträge zur histologischen Lokalisation der Grosshirnrinde, III, Die Rindenfelder der niederen Affen. J. Psychol. Neurol. 4, 177–226.

    Google Scholar 

  • Brodmann, K. (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Barth, Leipzig, Germany.

  • Büchel, C. and Friston, K. J. (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex 7, 768–778.

    Article  Google Scholar 

  • Burns, G. A. P. C. (1997) Neural connectivity of the rat: theory, methods and applications, DPhil thesis, University of Oxford, Oxford.

    Google Scholar 

  • Burns, G. A. P. C. and Young, M. P. (2000) Analysis of the connectional organisation of neural systems associated with the hippocampus in rats. Philos. Trans. R. Soc. Lond. B 355, 55–70.

    Article  CAS  Google Scholar 

  • Burns, G. A. P. C. (2001) Knowledge management of the neuroscientific literature: the data model and underlying strategy of the NeuroScholar system. Philos. Trans. R. Soc. Lond. B 356, 1187–1208.

    Article  CAS  Google Scholar 

  • Cannon, R. C., Hasselmo, M. E., and Koene, R. A. (2003) From biophysics to behavior. Catacomb2 and the design of biologically-plausible models for spatial navigation. Neuroinformatics 1, 3–42.

    Article  Google Scholar 

  • Cusick, C. G., Seltzer, B., Cola, M., and Griggs, E. (1995) Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J. Comp. Neurol. 360, 513–535.

    Article  CAS  Google Scholar 

  • Desimone, R., and Ungerleider, L. G. (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248, 164–89.

    Article  CAS  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex. 1, 1–47.

    Article  CAS  Google Scholar 

  • Friston, K. J. (1995) Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78.

    Article  Google Scholar 

  • Friston, K. J., Harrison, L., and Penny, W. (2003) Dynamic causal modelling. Neuroimage 19, 1273–302.

    Article  CAS  Google Scholar 

  • Hackett, T. A., Stepniewska, I., and Kaas, J. H. (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp. Neurol. 394, 475–95.

    Article  CAS  Google Scholar 

  • Kamper, L., Bozkurt, A., Rybacki, K., Geissler, A., Gerken, I., Stephan, K. E., and Kötter R. (2003) An introduction to CoCoMac-Online. The online-interface of the primate connectivity database CoCoMac, in Neuroscience databases. A practical guide, Kötter, R., ed., Kluwer Academic Publishers, Boston, pp. 155–169.

    Google Scholar 

  • Kötter, R. and Sommer, F. T. (2000) Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil. Trans. R. Soc. Lond. B 355, 127–134.

    Article  Google Scholar 

  • Kötter, R. and Stephan, K. E. (2003) Network participation indices: Characterizing component roles for processing in neural networks. Neural Networks 16, 1261–1275.

    Article  Google Scholar 

  • Kötter, R., Stephan, K. E., Palomero-Gallagher, N., Geyer, S., Schleicher, A., and Zilles, K. (2001) Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat. Embryol. 204, 333–349.

    Article  Google Scholar 

  • Leergaard, T. B., Alloway, K. D., Mutic, J. J., and Bjaalie, J. G. (2000) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J. Neurosci. 20, 8474–8484.

    CAS  Google Scholar 

  • Lewis, J. W. and Van Essen, D. C. (2000a) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111.

    Article  CAS  Google Scholar 

  • Lewis, J. W. and Van Essen, D. C. (2000b) Cortico-cortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137.

    Article  CAS  Google Scholar 

  • McIntosh, A. R. and Gonzalez-Lima, F. (1994) Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol. 72, 1717–1733.

    CAS  Google Scholar 

  • Olszewski, J. (1952) The thalamus of Macaca mulatta, S. Karger, New York.

    Google Scholar 

  • Pandya, D. N. and Seltzer, B. (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 204, 196–210.

    Article  CAS  Google Scholar 

  • Paxinos, G., Huang, X. F., and Toga, A. W. (2000) The Rhesus Monkey Brain in Stereotaxic Coordinates, Academic Press, San Diego, CA.

    Google Scholar 

  • Rockland, K. S. and Van Hoesen, G. W. (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4, 300–313.

    Article  CAS  Google Scholar 

  • Scannell, J. W., Blakemore, C., and Young, M. P. (1995) Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483.

    CAS  Google Scholar 

  • Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O’Neil, M. A., and Young, M. P. (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299.

    Article  CAS  Google Scholar 

  • Stephan, K. E., Zilles, K., and Kötter, R. (2000) Coordinate-independent mapping of structural and functional data by Objective Relational Transformation (ORT). Phil. Trans. R. Soc. Lond. B 355, 37–54.

    Article  CAS  Google Scholar 

  • Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G. A. P. C., Young, M. P., and Kötter, R. (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil. Trans. R. Soc. Lond. B 356, 1159–1186.

    Article  CAS  Google Scholar 

  • Stephan, K. E. and Kötter, R (1998) A formal approach to the translation of cortical maps, in Neural circuits and networks, Torre, V. and Nicholls, J., ed., Springer, Berlin, pp. 205–226.

    Google Scholar 

  • Vogt, B. A., Pandya, D. N., and Rosene, D. L. (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270.

    Article  CAS  Google Scholar 

  • Von Bonin, G. and Bailey, P. (1947) The neocortex of Macaca mulatta, University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Walker, A. E. (1940) A cytoarchitectural study of the prefrontal areas of macaque monkey. J. Comp. Neurol. 98, 59–86.

    Article  Google Scholar 

  • Young, M. P. (1993) The organization of neural systems in the primate cerebral cortex. Phil. Trans. R. Soc. Lond. B 252, 13–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kötter, R. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database. Neuroinform 2, 127–144 (2004). https://doi.org/10.1385/NI:2:2:127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:2:127

Index Entries

Navigation