skip to main content
research-article

LIBSVM: A library for support vector machines

Published:06 May 2011Publication History
Skip Abstract Section

Abstract

LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

References

  1. Boser, B. E., Guyon, I., and Vapnik, V. 1992. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory. ACM Press, 144--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chang, C.-C. and Lin, C.-J. 2001. Training ν-support vector classifiers: Theory and algorithms. Neural Comput. 13, 9, 2119--2147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chang, C.-C. and Lin, C.-J. 2002. Training ν-support vector regression: Theory and algorithms. Neural Comput. 14, 8, 1959--1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, P.-H., Fan, R.-E., and Lin, C.-J. 2006. A study on SMO-type decomposition methods for support vector machines. IEEE Trans. Neural Netw. 17, 893--908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, P.-H., Lin, C.-J., and Schölkopf, B. 2005. A tutorial on ν-support vector machines. Appl. Stochas. Models Bus. Indust. 21, 111--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cortes, C. and Vapnik, V. 1995. Support-vector network. Mach. Learn. 20, 273--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Crisp, D. J. and Burges, C. J. C. 2000. A geometric interpretation of ν-SVM classifiers. In Advances in Neural Information Processing Systems, S. Solla, T. Leen, and K.-R. Müller Eds., Vol. 12, MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  8. Dorff, K. C., Chambwe, N., Srdanovic, M., and Campagne, F. 2010. BDVal: reproducible large-scale predictive model development and validation in high-throughput datasets. Bioinf. 26, 19, 2472--2473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fan, R.-E., Chen, P.-H., and Lin, C.-J. 2005. Working set selection using second order information for training SVM. J. Mach. Learn. Res. 6, 1889--1918. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fine, S. and Scheinberg, K. 2001. Efficient svm training using low-rank kernel representations. J. Mach. Learn. Res. 2, 243--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Glasmachers, T. and Igel, C. 2006. Maximum-Gain working set selection for support vector machines. J. Mach. Learn. Res. 7, 1437--1466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Grauman, K. and Darrell, T. 2005. The pyramid match kernel: Discriminative classification with sets of image features. In Proceedings of the IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and Pollmann, S. 2009. PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinf. 7, 1, 37--53.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hsu, C.-W., Chang, C.-C., and Lin, C.-J. 2003. A practical guide to support vector classification. Tech. rep., Department of Computer Science, National Taiwan University.Google ScholarGoogle Scholar
  15. Hsu, C.-W. and Lin, C.-J. 2002a. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13, 2, 415--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hsu, C.-W. and Lin, C.-J. 2002b. A simple decomposition method for support vector machines. Mach. Learn. 46, 291--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Joachims, T. 1998. Making large-scale SVM learning practical. In Advances in Kernel Methods -- Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., MIT Press, Cambridge, MA, 169--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Keerthi, S. S., Chapelle, O., and DeCoste, D. 2006. Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res. 7, 1493--1515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K. 2001. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput. 13, 637--649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Knerr, S., Personnaz, L., and Dreyfus, G. 1990. Single-Layer learning revisited: A stepwise procedure for building and training a neural network. In Neurocomputing: Algorithms, Architectures and Applications, J. Fogelman, Ed. Springer.Google ScholarGoogle Scholar
  21. Kressel, U. H.-G. 1998. Pairwise classification and support vector machines. In Advances in Kernel Methods -- Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., MIT Press, Cambridge, MA, 255--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lee, Y.-J. and Mangasarian, O. L. 2001. RSVM: Reduced support vector machines. In Proceedings of the 1st SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  23. Lin, C.-J. and Weng, R. C. 2004. Simple probabilistic predictions for support vector regression. Tech. rep., Department of Computer Science, National Taiwan University.Google ScholarGoogle Scholar
  24. Lin, H.-T., Lin, C.-J., and Weng, R. C. 2007. A note on Platt's probabilistic outputs for support vector machines. Mach. Learn. 68, 267--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. List, N. and Simon, H. U. 2007. General polynomial time decomposition algorithms. J. Mach. Learn. Res. 8, 303--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. List, N. and Simon, H. U. 2009. SVM-Optimization and steepest-descent line search. In Proceedings of the 22nd Annual Conference on Computational Learning Theory.Google ScholarGoogle Scholar
  27. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kubler, S., Marinov, S., and Marsi, E. 2007. MaltParser: A language-independent system for data-driven dependency parsing. Natural Lang. Engin. 13, 2, 95--135.Google ScholarGoogle ScholarCross RefCross Ref
  28. Osuna, E., Freund, R., and Girosi, F. 1997a. Support vector machines: Training and applications. AI Memo 1602, Massachusetts Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Osuna, E., Freund, R., and Girosi, F. 1997b. Training support vector machines: An application to face detection. In Proceedings of CVPR'97. IEEE, Los Alamitos, CA, 130--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Palagi, L. and Sciandrone, M. 2005. On the convergence of a modified version of SVMlight algorithm. Optimiz. Methods Softw. 20, 2--3, 315--332.Google ScholarGoogle ScholarCross RefCross Ref
  31. Platt, J. C. 1998. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Platt, J. C. 2000. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  33. Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13, 7, 1443--1471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schölkopf, B., Smola, A., Williamson, R. C., and Bartlett, P. L. 2000. New support vector algorithms. Neural Comput. 12, 1207--1245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Segata, N. and Blanzieri, E. 2010. Fast and scalable local kernel machines. J. Mach. Learn. Res. 11, 1883--1926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Vapnik, V. 1998. Statistical Learning Theory. Wiley, New York.Google ScholarGoogle Scholar
  37. Wu, T.-F., Lin, C.-J., and Weng, R. C. 2004. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975--1005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. LIBSVM: A library for support vector machines

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Intelligent Systems and Technology
            ACM Transactions on Intelligent Systems and Technology  Volume 2, Issue 3
            April 2011
            259 pages
            ISSN:2157-6904
            EISSN:2157-6912
            DOI:10.1145/1961189
            Issue’s Table of Contents

            Copyright © 2011 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 6 May 2011
            • Accepted: 1 February 2011
            • Received: 1 January 2011
            Published in tist Volume 2, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Survey
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader