Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression

Abstract

Cortical GABAergic dysfunction has been implicated as a key component of the pathophysiology of schizophrenia and decreased expression of the gamma-aminobutyric acid (GABA) synthetic enzyme glutamic acid decarboxylase 67 (GAD67), encoded by GAD1, is found in schizophrenic post-mortem brain. We report evidence of distorted transmission of single-nucleotide polymorphism (SNP) alleles in two independent schizophrenia family-based samples. In both samples, allelic association was dependent on the gender of the affected offspring, and in the Clinical Brain Disorders Branch/National Institute of Mental Health (CBDB/NIMH) sample it was also dependent on catechol-O-methyltransferase (COMT) Val158Met genotype. Quantitative transmission disequilibrium test analyses revealed that variation in GAD1 influenced multiple domains of cognition, including declarative memory, attention and working memory. A 5′ flanking SNP affecting cognition in the families was also associated in unrelated healthy individuals with inefficient BOLD functional magnetic resonance imaging activation of dorsal prefrontal cortex (PFC) during a working memory task, a physiologic phenotype associated with schizophrenia and altered cortical inhibition. In addition, a SNP in the 5′ untranslated (and predicted promoter) region that also influenced cognition was associated with decreased expression of GAD1 mRNA in the PFC of schizophrenic brain. Finally, we observed evidence of statistical epistasis between two SNPs in COMT and SNPs in GAD1, suggesting a potential biological synergism leading to increased risk. These coincident results implicate GAD1 in the etiology of schizophrenia and suggest that the mechanism involves altered cortical GABA inhibitory activity, perhaps modulated by dopaminergic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  2. Moldin SO . The maddening hunt for madness genes. Nat Genet 1997; 17: 127–129.

    Article  CAS  PubMed  Google Scholar 

  3. Levinson DF . Molecular genetics of schizophrenia: a review of the recent literature. Curr Opin Psychiatry 2003; 16: 157–170.

    Article  Google Scholar 

  4. Owen MJ, Williams NM, O'Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  5. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  6. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  8. Norton N, Williams HJ, Owen MJ . An update on the genetics of schizophrenia. Curr Opin Psychiatry 2006; 19: 158–164.

    Article  PubMed  Google Scholar 

  9. Straub RE, Weinberger DR . Schizophrenia genes – famine to feast. Biol Psychiatry 2006; 60: 81–83.

    Article  PubMed  Google Scholar 

  10. Fletcher JM, Evans K, Baillie D, Byrd P, Hanratty D, Leach S et al. Schizophrenia associated chromosome 11q21 translocation: identification of flanking markers and development of chromosome 11q fragment hybrids as cloning and mapping resources. Am J Hum Genet 1993; 52: 478–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  12. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102: 8627–8632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  PubMed  Google Scholar 

  15. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 2000; 5: 77–84.

    Article  CAS  PubMed  Google Scholar 

  17. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976–980.

    Article  CAS  PubMed  Google Scholar 

  20. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  21. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 2004; 55: 192–195.

    Article  CAS  PubMed  Google Scholar 

  22. Talkowski ME, Seltman H, Bassett AS, Brzustowicz LM, Chen X, Chowdari KV et al. Evaluation of a susceptibility gene for schizophrenia: genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. Biol Psychiatry 2006; 60: 152–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marti SB, Cichon S, Propping P, Nothen M . Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Genet 2002; 114: 46–50.

    Article  PubMed  Google Scholar 

  24. Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2003; 13: 71–76.

    PubMed  Google Scholar 

  25. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 2004; 101: 12604–12609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    CAS  PubMed  Google Scholar 

  27. Schwab SG, Hoefgen B, Hanses C, Hassenbach MB, Albus M, Lerer B et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 2005; 58: 446–450.

    Article  CAS  PubMed  Google Scholar 

  28. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goff DC, Coyle JT . The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158: 1367–1377.

    Article  CAS  PubMed  Google Scholar 

  30. Konradi C, Heckers S . Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97: 153–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cloninger CR . The discovery of susceptibility genes for mental disorders. Proc Natl Acad Sci USA 2002; 99: 13365–13367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  33. Moghaddam B . Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40: 881–884.

    Article  CAS  PubMed  Google Scholar 

  34. Lewis DA . GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Brain Res Rev 2000; 31: 270–276.

    Article  CAS  PubMed  Google Scholar 

  35. Benes FM, Berretta S . Gabaergic interneurons. Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25: 1–27.

    Article  CAS  PubMed  Google Scholar 

  36. Kalkman HO, Loetscher E . GAD(67): the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis. J Neural Transm 2003; 110: 803–812.

    CAS  PubMed  Google Scholar 

  37. Wassef A, Baker J, Kochan LD . GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 2003; 23: 601–640.

    Article  CAS  PubMed  Google Scholar 

  38. Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 2004; 44: 251–261.

    Article  CAS  PubMed  Google Scholar 

  39. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 96–101.

    Article  CAS  Google Scholar 

  40. Hyde TM, Weinberger DR . Seizures and schizophrenia. Schizophr Bull 1997; 23: 611–622.

    Article  CAS  PubMed  Google Scholar 

  41. Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S . Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry 2002; 59: 347–354.

    Article  PubMed  Google Scholar 

  42. Mattay VS, Callicott JH, Bertolino A, Santha AK, Tallent KA, Goldberg TE et al. Abnormal functional lateralization of the sensorimotor cortex in patients with schizophrenia. Neuroreport 1997; 8: 2977–2984.

    Article  CAS  PubMed  Google Scholar 

  43. Costa E, Davis JM, Dong E, Grayson DR, Guidotti A, Tremolizzo L et al. A GABAergic cortical deficit dominates schizophrenia pathophysiology. Crit Rev Neurobiol 2004; 16: 1–23.

    CAS  PubMed  Google Scholar 

  44. Lewis DA, Hashimoto T, Volk DW . Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005; 6: 312–324.

    Article  CAS  PubMed  Google Scholar 

  45. Benes FM, Vincent SL, Marie A, Khan Y . Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 1996; 75: 1021–1031.

    Article  CAS  PubMed  Google Scholar 

  46. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney Jr WE et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    Article  CAS  PubMed  Google Scholar 

  47. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA . Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57: 237–245.

    Article  CAS  PubMed  Google Scholar 

  49. Woo TU, Walsh JP, Benes FM . Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2004; 61: 649–657.

    Article  CAS  PubMed  Google Scholar 

  50. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB . Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    Article  CAS  PubMed  Google Scholar 

  51. Pinal CS, Tobin AJ . Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 1998; 5: 109–118.

    CAS  PubMed  Google Scholar 

  52. Kanaani J, Lissin D, Kash SF, Baekkeskov S . The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65. J Biol Chem 1999; 274: 37200–37209.

    Article  CAS  PubMed  Google Scholar 

  53. Rimvall K, Martin DL . The level of GAD67 protein is highly sensitive to small increases in intraneuronal gamma-aminobutyric acid levels. J Neurochem 1994; 62: 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  54. Rimvall K, Sheikh SN, Martin DL . Effects of increased gamma-aminobutyric acid levels on GAD67 protein and mRNA levels in rat cerebral cortex. J Neurochem 1993; 60: 714–720.

    Article  CAS  PubMed  Google Scholar 

  55. Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M . Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex 2001; 11: 806–815.

    Article  CAS  PubMed  Google Scholar 

  56. Lech M, Skibinska A, Siucinska E, Kossut M . Learning-induced plasticity of cortical representations does not affect GAD65 mRNA expression and immunolabeling of cortical neuropil. Brain Res 2005; 1044: 266–271.

    Article  CAS  PubMed  Google Scholar 

  57. Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 1997; 94: 6496–6499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Represa A, Ben Ari Y . Trophic actions of GABA on neuronal development. Trends Neurosci 2005; 28: 278–283.

    Article  CAS  PubMed  Google Scholar 

  59. Lee WC, Huang H, Feng G, Sanes JR, Brown EN, So PT et al. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol 2006; 4: e29.

    Article  PubMed  CAS  Google Scholar 

  60. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T . GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 2005; 47: 803–815.

    Article  CAS  PubMed  Google Scholar 

  61. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H . GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 2006; 439: 589–593.

    Article  CAS  PubMed  Google Scholar 

  62. De LV, Muglia P, Masellis M, Jane DE, Wong GW, Kennedy JL . Polymorphisms in glutamate decarboxylase genes: analysis in schizophrenia. Psychiatr Genet 2004; 14: 39–42.

    Article  Google Scholar 

  63. Lundorf MD, Buttenschon HN, Foldager L, Blackwood DH, Muir WJ, Murray V et al. Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 94–101.

    Article  Google Scholar 

  64. Addington AM, Gornick M, Duckworth J, Sporn A, Gogtay N, Bobb A et al. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 2005; 10: 581–588.

    Article  CAS  PubMed  Google Scholar 

  65. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–844.

    Article  CAS  PubMed  Google Scholar 

  66. Winterer G, Weinberger DR . Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004; 27: 683–690.

    Article  CAS  PubMed  Google Scholar 

  67. Weiss KM, Terwilliger JD . How many diseases does it take to map a gene with SNPs? Nat Genet 2000; 26: 151–157.

    Article  CAS  PubMed  Google Scholar 

  68. Egan MF, Goldberg TE, Gscheidle T, Weirich M, Bigelow LB, Weinberger DR . Relative risk of attention deficits in siblings of patients with schizophrenia. Am J Psychiatry 2000; 157: 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  69. Cloninger CR, Kaufmann CA, Faraone SV, Malaspina D, Svrakic DM, Harkavy-Friedman J et al. Genome-wide search for schizophrenia susceptibility loci: The NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 275–281.

    Article  CAS  PubMed  Google Scholar 

  70. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH genetics initiative and millennium consortium. Am J Med Genet 1998; 81: 290–295.

    Article  CAS  PubMed  Google Scholar 

  71. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millennium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  72. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11: 287–293.

    Article  CAS  PubMed  Google Scholar 

  73. Egan MF, Goldberg TE, Gscheidle T, Weirich M, Rawlings R, Hyde TM et al. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol Psychiatry 2001; 50: 98–107.

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    Article  CAS  PubMed  Google Scholar 

  75. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR . Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 2003; 160: 2209–2215.

    Article  PubMed  Google Scholar 

  76. Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B et al. Abnormal FMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 2003; 160: 709–719.

    Article  PubMed  Google Scholar 

  77. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297: 400–403.

    Article  CAS  PubMed  Google Scholar 

  78. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  79. Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 1998; 18: 186–196.

    Article  CAS  PubMed  Google Scholar 

  80. Callicott JH . An expanded role for functional neuroimaging in schizophrenia. Curr Opin Neurobiol 2003; 13: 256–260.

    Article  CAS  PubMed  Google Scholar 

  81. McGuigan FE, Ralston SH . Single nucleotide polymorphism detection: allelic discrimination using TaqMan. Psychiatr Genet 2002; 12: 133–136.

    Article  PubMed  Google Scholar 

  82. Clayton D, Jones H . Transmission/disequilibrium tests for extended marker haplotypes. Am J Hum Genet 1999; 65: 1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Clayton D . A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  85. Abecasis GR, Cookson WO . GOLD – graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  86. Dudbridge F, Koeleman BP, Todd JA, Clayton DG . Unbiased application of the transmission/disequilibrium test to multilocus haplotypes. Am J Hum Genet 2000; 66: 2009–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Spielman RS, Ewens WJ . A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet 1998; 62: 450–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM . Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004; 26: 61–69.

    Article  PubMed  Google Scholar 

  89. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  91. Cordell HJ, Todd JA, Hill NJ, Lord CJ, Lyons PA, Peterson LB et al. Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. Genetics 2001; 158: 357–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cordell HJ . Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002; 11: 2463–2468.

    Article  CAS  PubMed  Google Scholar 

  93. Quandt K, Frech K, Karas H, Wingender E, Werner T . MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23: 4878–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lipska BK, Deep-Soboslay A, Shannon-Weickert C, Hyde TM, Martin CE, Herman MM et al. Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol Psychiatry 2006; 60: 650–658.

    Article  CAS  PubMed  Google Scholar 

  95. Kobayashi T, Ebihara S, Ishii K, Kobayashi T, Nishijima M, Endo S et al. Structural and functional characterization of mouse glutamate decarboxylase 67 gene promoter. Biochim Biophys Acta 2003; 1628: 156–168.

    Article  CAS  PubMed  Google Scholar 

  96. Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry 1996; 1: 453–460.

    CAS  PubMed  Google Scholar 

  97. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM . Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 2002; 59: 521–529.

    Article  CAS  PubMed  Google Scholar 

  99. Terasawa E, Fernandez DL . Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001; 22: 111–151.

    CAS  PubMed  Google Scholar 

  100. Searles RV, Yoo MJ, He JR, Shen WB, Selmanoff M . Sex differences in GABA turnover and glutamic acid decarboxylase (GAD(65) and GAD(67)) mRNA in the rat hypothalamus. Brain Res 2000; 878: 11–19.

    Article  CAS  PubMed  Google Scholar 

  101. Krizbai IA, Katarova Z, Szabo G, Parducz A, Wolff JR . Modulation of the truncated GAD25 by estrogen in the olfactory bulb of adult rats. Neuroreport 2000; 11: 791–794.

    Article  CAS  PubMed  Google Scholar 

  102. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Straub RE, Egan MF, Goldberg TE, Callicott JH, Hariri AR, Balkissoon R et al. GAD1, which encodes glutamate decarboxylase 1 (GAD 67), is associated with adult onset schizophrenia in two independent samples. Am J Med Genet (Neuropsychiatr Genet) 2003; 122B: 177.

    Google Scholar 

  104. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003; 100: 6186–6191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A et al. New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry 2004; 161: 1110–1112.

    Article  PubMed  Google Scholar 

  106. Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ . Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 2004; 24: 5331–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J, Stefansson K . An Icelandic example of the impact of population structure on association studies. Nat Genet 2005; 37: 90–95.

    Article  CAS  PubMed  Google Scholar 

  108. Gardner M, Gonzalez-Neira A, Lao O, Calafell F, Bertranpetit J, Comas D . Extreme population differences across Neuregulin 1 gene, with implications for association studies. Mol Psychiatry 2006; 11: 66–75.

    Article  CAS  PubMed  Google Scholar 

  109. Egan MF, Goldberg TE . Intermediate cognitive phenotypes associated with schizophrenia. Methods Mol Med 2003; 77: 163–197.

    PubMed  Google Scholar 

  110. Freedman R, Olincy A, Ross RG, Waldo MC, Stevens KE, Adler LE et al. The genetics of sensory gating deficits in schizophrenia. Curr Psychiatry Rep 2003; 5: 155–161.

    Article  PubMed  Google Scholar 

  111. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003; 23: 6690–6694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our patients and their families, as well as Mary Weirich (MSW) for her invaluable work in leading the recruitment team and Drs Llewellyn Bigelow and Thomas M Hyde for their tireless work in the clinical evaluation of subjects in CBDB Sibling Study and Drs Mary M Herman and Thomas M Hyde for their invaluable assistance in post-mortem tissue processing. This work was supported by the Intramural Research Program (IRP) of the NIMH, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R E Straub.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, R., Lipska, B., Egan, M. et al. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 12, 854–869 (2007). https://doi.org/10.1038/sj.mp.4001988

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001988

Keywords

This article is cited by

Search

Quick links