Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Behavior of spinal neurons deprived of supraspinal input

Abstract

This Review discusses the spinal neuronal changes that occur after a complete spinal cord injury (SCI) in humans. Early after an SCI, neither locomotor nor spinal reflex activity can be evoked. Once spinal shock has resolved, locomotor activity and an early spinal reflex component reappear in response to appropriate peripheral afferent input. In the subsequent 4–8 months, clinical signs of spasticity appear, largely as a result of non-neuronal (for example, muscular) changes, whereas locomotor and spinal reflex activity undergo little change. At 9–12 months, the electromyographic amplitude in the leg muscles during assisted locomotion declines, accompanied by a decrease in the amplitude of the early spinal reflex component and an increase in the amplitude of a late spinal reflex component. This exhaustion of locomotor activity also occurs in nonambulatory patients with incomplete SCI. Neuronal dysfunction is fully established 1 year after the injury without further alterations in subsequent years. In chronic SCI, the absence of input from supraspinal sources has been suggested to lead to degradation of neuronal function below the level of the lesion or, alternatively, a predominance of inhibitory signaling to the locomotor pattern generator. Appropriate training and/or provision of afferent input to spinal neurons might help to prevent neuronal dysfunction in chronic SCI.

Key Points

  • After spinal cord injury (SCI), spinal neuronal circuits deprived of supraspinal input undergo profound changes in their behavior, which are reflected in impairment of both locomotor activity and associated reflexes

  • Neuronal dysfunction after severe SCI becomes established over a 1 year period, and leads to an early exhaustion of locomotor electromyographic activity during assisted stepping

  • After severe SCI, spinal reflexes associated with locomotor activity shift from an early spinal reflex component (also present in healthy individuals) to the dominance of a late reflex component

  • Immobility after an SCI, with the loss of afferent input to spinal locomotor centers, leads to weakened function of excitatory neuronal circuits underlying locomotor and reflex activity

  • Severe SCI is followed by an imbalance in the activity of excitatory and inhibitory neuronal circuits that normally shape the locomotor pattern

  • Adequate animal models exist only for the early stages of deprivation of supraspinal input; chronic animal models are required to define the neuronal dysfunction more precisely and develop appropriate countermeasures

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electromyographic recordings of spinal reflex responses and locomotor activity.
Figure 2: Behavior of spinal neuronal circuits that control locomotion and spinal reflexes.

Similar content being viewed by others

References

  1. Schwab, M. E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    CAS  PubMed  Google Scholar 

  2. Raineteau, O. & Schwab, M. E. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 (2001).

    CAS  PubMed  Google Scholar 

  3. Deumens, R., Koopmans, G. C. & Joosten, E. A. Regeneration of descending axon tracts after spinal cord injury. Prog. Neurobiol. 77, 57–89 (2005).

    CAS  PubMed  Google Scholar 

  4. Dietz, V. & Curt, A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol. 5, 688–694 (2006).

    PubMed  Google Scholar 

  5. Raisman, G. A promising therapeutic approach to spinal cord repair. J. R. Soc. Med. 96, 259–261 (2003).

    PubMed  PubMed Central  Google Scholar 

  6. Barnett, S. C. & Chang, L. Olfactory ensheathing cells and CNS repair: going solo or in need of a friend? Trends Neurosci. 27, 54–60 (2004).

    CAS  PubMed  Google Scholar 

  7. Li, Y., Field, P. M. & Raisman, G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277, 2000–2002 (1997).

    CAS  PubMed  Google Scholar 

  8. Ramón-Cueto, A., Cordero, M. I., Santos-Benito, F. F. & Avila, J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435 (2000).

    PubMed  Google Scholar 

  9. Mackay-Sim, A. et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131, 2376–2386 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Curt, A. & Dietz, V. Controversial treatments for spinal-cord injuries. Lancet 365, 841 (2005).

    PubMed  Google Scholar 

  11. Dobkin, B. H., Curt, A. & Guest, J. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil. Neural Repair 20, 5–13 (2006).

    PubMed  PubMed Central  Google Scholar 

  12. Dietz, V. Ready for human spinal cord repair? Brain 131, 2240–2242 (2008).

    PubMed  Google Scholar 

  13. Houle, J. D. & Tessler, A. Repair of chronic spinal cord injury. Exp. Neurol. 182, 247–260 (2003).

    PubMed  Google Scholar 

  14. Ye, J. H. & Houle, J. D. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp. Neurol. 143, 70–81 (1997).

    CAS  PubMed  Google Scholar 

  15. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M. & Fehlings, M. G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J. Neurosci. 26, 3377–3389 (2006).

    CAS  PubMed  Google Scholar 

  16. Nomura, H. et al. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury. Neurosurgery 63, 127–141 (2008).

    PubMed  Google Scholar 

  17. Klapka, N. et al. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur. J. Neurosci. 22, 3047–3058 (2005).

    PubMed  Google Scholar 

  18. Guest, J. D., Hiester, E. D. & Bunge, R. P. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 192, 384–393 (2005).

    CAS  PubMed  Google Scholar 

  19. Dietz, V., Grillner, S., Trepp, A., Hubli, M. & Bolliger, M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain 132, 2196–2205 (2009).

    CAS  PubMed  Google Scholar 

  20. Dietz, V. & Müller, R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain 127, 2221–2231 (2004).

    PubMed  Google Scholar 

  21. Curt, A., Alkadhi, H., Crelier, G. R., Boendermaker, S. H., Hepp-Reymond, M. C. & Kollias, S. S. Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain 125, 2567–2578 (2002).

    PubMed  Google Scholar 

  22. Halder, P. et al. Preserved aspects of cortical foot control in paraplegia. Neuroimage 31, 692–698 (2006).

    PubMed  Google Scholar 

  23. Hotz-Boendermaker, S. et al. Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. Neuroimage 39, 383–394 (2008).

    PubMed  Google Scholar 

  24. Dietz, V., Colombo, G., Jensen, L. & Baumgartner, L. Locomotor capacity of spinal cord in paraplegic patients. Ann. Neurol. 37, 574–582 (1995).

    CAS  PubMed  Google Scholar 

  25. Dietz, V., Müller, R. & Colombo, G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125, 2626–2634 (2002).

    PubMed  Google Scholar 

  26. Dobkin, B. H., Harkema, S., Requejo, P. & Edgerton, V. R. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J. Neurol. Rehab. 9, 183–190 (1995).

    CAS  Google Scholar 

  27. Harkema, S. J. et al. Human lumbosacral spinal cord interprets loading during stepping. J. Neurophysiol. 77, 797–811 (1997).

    CAS  PubMed  Google Scholar 

  28. Andersson, O. & Grillner, S. Peripheral control of the cat's step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion”. Acta Physiol. Scand. 118, 229–239 (1983).

    CAS  PubMed  Google Scholar 

  29. Duysens, J. & Pearson, K. G. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res. 187, 321–332 (1980).

    CAS  PubMed  Google Scholar 

  30. Pearson, K. G. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786–791 (1995).

    CAS  PubMed  Google Scholar 

  31. Andersen, O. K., Finnerup, N. B., Spaich, E. G., Jensen, T. S. & Arendt-Nielsen, L. Expansion of nociceptive withdrawal reflex receptive fields in spinal cord injured humans. Clin. Neurophysiol. 115, 2798–2810 (2004).

    PubMed  Google Scholar 

  32. Hornby, T. G., Rymer, W. Z., Benz, E. N. & Schmit, B. D. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials? J. Neurophysiol. 89, 416–426 (2003).

    CAS  PubMed  Google Scholar 

  33. Conway, B. A. & Knikou, M. The action of plantar pressure on flexion reflex pathways in the isolated human spinal cord. Clin. Neurophysiol. 119, 892–896 (2008).

    PubMed  Google Scholar 

  34. Schmit, B. D., McKenna-Cole, A. & Rymer, W. Z. Flexor reflexes in chronic spinal cord injury triggered by imposed ankle rotation. Muscle Nerve 23, 793–803 (2000).

    CAS  PubMed  Google Scholar 

  35. Hiersemenzel, L. P., Curt, A. & Dietz, V. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54, 1574–1582 (2000).

    CAS  PubMed  Google Scholar 

  36. Lavrov, I. et al. Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability. J. Neurophysiol. 96, 1699–1710 (2006).

    PubMed  Google Scholar 

  37. Valero-Cabré, A., Forés, J. & Navarro, X. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection. J. Neurophysiol. 91, 2838–2848 (2004).

    PubMed  Google Scholar 

  38. Jankowska, E., Jukes, M. G., Lund, S. & Lundberg, A. The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402 (1967).

    CAS  PubMed  Google Scholar 

  39. Forssberg, H. & Grillner, S. The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res. 50, 184–186 (1973).

    CAS  PubMed  Google Scholar 

  40. Grillner, S. & Zangger, P. On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261 (1979).

    CAS  PubMed  Google Scholar 

  41. Jones, C. A. & Yang, J. F. Reflex behavior during walking in incomplete spinal-cord-injured subjects. Exp. Neurol. 128, 239–248 (1994).

    CAS  PubMed  Google Scholar 

  42. Dietz, V., Quintern, J. & Berger, W. Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain 104, 431–449 (1981).

    CAS  PubMed  Google Scholar 

  43. O'Dwyer, N. J., Ada, L. & Neilson, P. D. Spasticity and muscle contracture following stroke. Brain 119, 1737–1749 (1996).

    PubMed  Google Scholar 

  44. Ibrahim, I. K., Berger, W., Trippel, M. & Dietz, V. Stretch-induced electromyographic activity and torque in spastic elbow muscles. Brain 116, 971–989 (1993).

    PubMed  Google Scholar 

  45. Lieber, R. L. & Fridén, J. Spasticity causes a fundamental rearrangement of muscle−joint interaction. Muscle Nerve 25, 265–270 (2002).

    PubMed  Google Scholar 

  46. Dietz, V. & Sinkjaer, T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 6, 725–733 (2007).

    PubMed  Google Scholar 

  47. Bennett, D. J., Sanelli, L., Cooke, C. L., Harvey, P. J. & Gorassini, M. A. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J. Neurophysiol. 91, 2247–2258 (2004).

    CAS  PubMed  Google Scholar 

  48. Li, X., Murray, K., Harvey, P. J., Ballou, E. W. & Bennett, D. J. Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 97, 1236–1246 (2007).

    CAS  PubMed  Google Scholar 

  49. Li, Y., Gorassini, M. A. & Bennett, D. J. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats. J. Neurophysiol. 91, 767–783 (2004).

    CAS  PubMed  Google Scholar 

  50. Kitzman, P. Alteration in axial motoneuronal morphology in the spinal cord injured spastic rat. Exp. Neurol. 192, 100–108 (2005).

    PubMed  Google Scholar 

  51. Kitzman, P. Changes in vesicular glutamate transporter 2, vesicular GABA transporter and vesicular acetylcholine transporter labeling of sacrocaudal motoneurons in the spastic rat. Exp. Neurol. 197, 407–419 (2006).

    CAS  PubMed  Google Scholar 

  52. Kakinohana, O. et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience 141, 1569–1583 (2006).

    CAS  PubMed  Google Scholar 

  53. Hultborn, H. Changes in neuronal properties and spinal reflexes during development of spasticity following spinal cord lesions and stroke: studies in animal models and patients. J. Rehabil. Med. 35, 46–55 (2003).

    Google Scholar 

  54. Müller, R. & Dietz, V. Neuronal function in chronic spinal cord injury: divergence between locomotor and flexion- and H-reflex activity. Clin. Neurophysiol. 117, 1499–1507 (2006).

    PubMed  Google Scholar 

  55. Valero-Cabré, A. & Navarro, X. Changes in crossed spinal reflexes after peripheral nerve injury and repair. J. Neurophysiol. 87, 1763–1771 (2002).

    PubMed  Google Scholar 

  56. de Leon, R. D., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J. Neurophysiol. 79, 1329–1340 (1998).

    CAS  PubMed  Google Scholar 

  57. Edgerton, V. R., de Leon, R. D., Tillakaratne, N., Recktenwald, M. R., Hodgson, J. A. & Roy, R. R. Use-dependent plasticity in spinal stepping and standing. Adv. Neurol. 72, 233–247 (1997).

    CAS  PubMed  Google Scholar 

  58. Hains, B. C., Willis, W. D. & Hulsebosch, C. E. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res. 970, 238–241 (2003).

    CAS  PubMed  Google Scholar 

  59. García-Alías, G., Barkhuysen, S., Buckle, M. & Fawcett, J. W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    PubMed  Google Scholar 

  60. Edgerton, V. R., de Leon, R. D., Tillakaratne, N., Recktenwald, M. R., Hodgson, J. A. & Roy, R. R. Use-dependent plasticity in spinal stepping and standing. Adv. Neurol. 72, 233–247 (1997).

    CAS  PubMed  Google Scholar 

  61. Dietz, V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 3, 781–790 (2002).

    CAS  PubMed  Google Scholar 

  62. Maier, I. C. et al. Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain 132, 1426–1440 (2009).

    PubMed  Google Scholar 

  63. Dietz, V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol. Rev. 72, 33–69 (1992).

    CAS  PubMed  Google Scholar 

  64. Burns, A. S., Lemay, M. A. & Tessler, A. Abnormal spontaneous potentials in distal muscles in animal models of spinal cord injury. Muscle Nerve 31, 46–51 (2005).

    PubMed  Google Scholar 

  65. Ginsberg, S. D. & Martin, L. J. Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons. J. Neurotrauma 19, 99–109 (2002).

    PubMed  Google Scholar 

  66. Wu, Y. P. & Ling, E. A. Transsynaptic changes of neurons and associated microglial reaction in the spinal cord of rats following middle cerebral artery occlusion. Neurosci. Lett. 256, 41–44 (1998).

    CAS  PubMed  Google Scholar 

  67. Aisen, M. L., Brown, W. & Rubin, M. Electrophysiologic changes in lumbar spinal cord after cervical cord injury. Neurology 42, 623–626 (1992).

    CAS  PubMed  Google Scholar 

  68. Chang, C. W. Evident transsynaptic degeneration of motor neurons after spinal cord injury: a study of neuromuscular jitter by axonal microstimulation. Am. J. Phys. Med. Rehabil. 77, 118–121 (1998).

    CAS  PubMed  Google Scholar 

  69. Lin, C. S., Macefield, V. G., Elam, M., Wallin, B. G., Engel, S. & Kiernan, M. C. Axonal changes in spinal cord injured patients distal to the site of injury. Brain 130, 985–994 (2007).

    PubMed  Google Scholar 

  70. Nyboer, V. J. & Johnson, H. E. Electromyographic findings in lower extremities of patients with traumatic quadriplegia. Arch. Phys. Med. Rehabil. 52, 256–259 (1971).

    CAS  PubMed  Google Scholar 

  71. Hara, Y., Akaboshi, K., Masakado, Y. & Chino, N. Physiologic decrease of single thenar motor units in the F-response in stroke patients. Arch. Phys. Med. Rehabil. 81, 418–423 (2000).

    CAS  PubMed  Google Scholar 

  72. Lukacs, M., Vecsei, L. & Beniczky, S. Changes in muscle fiber density following a stroke. Clin. Neurophysiol. 120, 1539–1542 (2009).

    CAS  PubMed  Google Scholar 

  73. Hansen, N. L. et al. Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion. J. Neurophysiol. 94, 934–942 (2005).

    CAS  PubMed  Google Scholar 

  74. Grillner, S. et al. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 18, 270–279 (1995).

    CAS  PubMed  Google Scholar 

  75. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18, 451–458 (1995).

    CAS  PubMed  Google Scholar 

  76. Tillakaratne, N. J. et al. Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J. Neurosci. 22, 3130–3143 (2002).

    CAS  PubMed  Google Scholar 

  77. Ichiyama, R. M., Broman, J., Edgerton, V. R. & Havton, L. A. Ultrastructural synaptic features differ between alpha- and gamma-motoneurons innervating the tibialis anterior muscle in the rat. J. Comp. Neurol. 499, 306–315 (2006).

    PubMed  Google Scholar 

  78. de Leon, R. D., Tamaki, H., Hodgson, J. A., Roy, R. R. & Edgerton, V. R. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J. Neurophysiol. 82, 359–369 (1999).

    CAS  PubMed  Google Scholar 

  79. Wirz, M. et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch. Phys. Med. Rehabil. 86, 672–680 (2005).

    PubMed  Google Scholar 

  80. Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Milanov, I. G. Flexor reflex for assessment of common interneurone activity in spasticity. Electromyogr. Clin. Neurophysiol. 32, 621–629 (1992).

    CAS  PubMed  Google Scholar 

  83. Dietz, V. Do human bipeds use quadrupedal coordination? Trends Neurosci. 25, 462–467 (2002).

    PubMed  Google Scholar 

  84. Dietz, V., Fouad, K. & Bastiaanse, C. M. Neuronal coordination of arm and leg movements during human locomotion. Eur. J. Neurosci. 14, 1906–1914 (2001).

    CAS  PubMed  Google Scholar 

  85. Michel, J., van Hedel, H. J. & Dietz, V. Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination. Eur. J. Neurosci. 27, 1867–1875 (2008).

    CAS  PubMed  Google Scholar 

  86. Zehr, E. P., Hesketh, K. L. & Chua, R. Differential regulation of cutaneous and H-reflexes during leg cycling in humans. J. Neurophysiol. 85, 1178–1184 (2001).

    CAS  PubMed  Google Scholar 

  87. Zehr, E. P. & Kido, A. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes. J. Physiol. 537, 1033–1045 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Calancie, B., Alexeeva, N., Broton, J. G. & Molano, M. R. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity. Clin. Neurophysiol. 116, 75–86 (2005).

    PubMed  Google Scholar 

  89. Bussel, B., Roby-Brami, A., Yakovleff, A. & Bennis, N. Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator. Brain Res. Bull. 22, 53–56 (1989).

    CAS  PubMed  Google Scholar 

  90. Pierrot-Deseilligny, E. & Burke, D. The Circuitry of Human Spinal Cord. Its Role in Motor Control and Movement Disorders (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

Download references

Acknowledgements

I would like to thank Professors B. Gähwiler and Y. von Cramon for helpful comments and discussions, and R. Jurd for editorial assistance. This work was supported by the Seventh Framework Program of the European Commission (project 'Spinal Cord Repair'; HEALTH-F2-2007-201144) and the Swiss National Research Foundation (320030-117768).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, V. Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol 6, 167–174 (2010). https://doi.org/10.1038/nrneurol.2009.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing