Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gephyrin: a master regulator of neuronal function?

Key Points

  • Gephyrin is a multifunctional protein that is responsible for molybdenum cofactor biosynthesis in all organisms and for postsynaptic clustering of glycine receptors and type A GABA receptors in the vertebrate CNS.

  • Gephyrin self-assembles to form a protein scaffold, which interacts with numerous, structurally different proteins to form a highly ordered signalling complex in glycinergic and GABAergic synapses.

  • Gephyrin's function as a scaffolding protein is regulated by alternative mRNA splicing and by multiple post-transcriptional and post-translational modifications, which are only beginning to be understood.

  • Regulation of the gephyrin scaffold by multiple signalling cascades modulates the formation and plasticity of GABAergic synapses and thereby the strength of GABAergic transmission.

  • Because signals impinging on gephyrin post-translational modification are activated by excitatory neurotransmission and increased intracellular calcium concentration, the gephyrin scaffold may form an intracellular hub that modulates synaptic homeostasis and excitatory–inhibitory balance.

  • Abnormal GABAergic transmission during brain development, possibly brought about or at least linked to impaired gephyrin regulation, might have enduring structural and functional consequences in the adult brain and might contribute to the pathophysiology of major neurological and neuropsychiatric diseases.

Abstract

The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels — namely, type A GABA (GABAA) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein–protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postsynaptic localization and clustering of gephyrin in neurons.
Figure 2: Molecular heterogeneity of inhibitory PSDs and the regulation of gephyrin clustering in GABAergic synapses.
Figure 3: Role of gephyrin as a master regulator of neuronal function.

Similar content being viewed by others

References

  1. Ogino, K. et al. Duplicated gephyrin genes showing distinct tissue distribution and alternative splicing patterns mediate molybdenum cofactor biosynthesis, glycine receptor clustering, and escape behavior in zebrafish. J. Biol. Chem. 286, 806–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Fritschy, J. M., Harvey, R. J. & Schwarz, G. Gephyrin, where do we stand, where do we go? Trends Neurosci. 31, 257–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Tretter, V. et al. Gephyrin, the enigmatic organizer at GABAergic synapses. Front. Cell. Neurosci. 6, 23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dutertre, S., Becker, C. M. & Betz, H. Inhibitory glycine receptors: an update. J. Biol. Chem. 287, 40216–40223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marín, O. Interneuron dysfunction in psychiatric disorders. Nature Rev. Neurosci. 13, 107–120 (2012).

    Article  CAS  Google Scholar 

  6. Lewis, D. A. Cortical circuit dysfunction and cognitive deficits in schizophrenia — implications for preemptive interventions. Eur. J. Neurosci. 35, 1871–1878 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nawrotzki, R., Islinger, M., Vogel, I., Völkl, A. & Kirsch, J. Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem. Cell Biol. 137, 471–482 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz, G., Mendel, R. R. & Ribbe, M. W. Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Stallmeyer, B. et al. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc. Natl Acad. Sci. USA 96, 1333–1338 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998). This paper describes the effects of targeted deletion of Gphn in mice, revealing gephyrin's dual function in molybdenum cofactor biosynthesis and postsynaptic clustering of GlyRs and GABA A Rs at inhibitory synapses.

    Article  CAS  PubMed  Google Scholar 

  11. Reiss, J. et al. A GPHN point mutation leading to molybdenum cofactor deficiency. Clin. Genet. 80, 598–599 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Smolinsky, B., Eichler, S. A., Buchmeier, S., Meier, J. C. & Schwarz, G. Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 17370–17379 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Pfeiffer, F., Graham, D. & Betz, H. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J. Biol. Chem. 257, 9389–9393 (1982).

    CAS  PubMed  Google Scholar 

  14. Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem. 266, 22242–22245 (1991).

    CAS  PubMed  Google Scholar 

  15. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl Acad. Sci. USA 81, 7224–7227 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J. Cell Biol. 101, 683–688 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Triller, A., Cluzeaud, F. & Korn, H. γ-Aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J. Cell Biol. 104, 947–956 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Bohlhalter, S., Mohler, H. & Fritschy, J. M. Inhibitory neurotransmission in rat spinal cord: co-localization of glycine and GABAA-receptors at GABAergic synaptic contacts demonstrated by triple-immunofluorescence staining. Brain Res. 642, 59–69 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Sassoè-Pognetto, M. et al. Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J. Comp. Neurol. 357, 1–14 (1995).

    Article  PubMed  Google Scholar 

  20. Giustetto, M., Kirsch, J., Fritschy, J. M., Cantino, D. & Sassoè-Pognetto, M. Localisation of the clustering protein gephyrin at GABAergic synapses in the main olfactory bulb of the rat. J. Comp. Neurol. 395, 231–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Sassoè-Pognetto, M., Panzanelli, P., Sieghart, W. & Fritschy, J. M. Co-localization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites. J. Comp. Neurol. 420, 481–498 (2000). This paper provides the first anatomical demonstration of the presence of gephyrin clusters in the PSD of GABAergic synapses in major regions of the CNS, in which it was associated with GABA A R subtypes containing the α1-, α2- or α3-subunit.

    Article  PubMed  Google Scholar 

  22. Lardi-Studler, B. et al. Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J. Cell Biol. 120, 1371–1382 (2007).

    CAS  Google Scholar 

  23. Kneussel, M. & Loebrich, S. Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol. Cell 99, 297–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Papadopoulos, T. & Soykan, T. The role of collybistin in gephyrin clustering at inhibitory synapses: facts and open questions. Front. Cell. Neurosci. 5, 11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sassoè-Pognetto, M., Frola, E., Pregno, G., Briatore, F. & Patrizi, A. Understanding the molecular diversity of GABAergic synapses. Front. Cell. Neurosci. 5, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci. 6, 450–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Dumoulin, A., Triller, A. & Kneussel, M. Cellular transport and membrane dynamics of the glycine receptor. Front. Mol. Neurosci. 2, 28 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Barnard, E. A. et al. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and function. Pharmacol. Rev. 50, 291–313 (1998).

    CAS  PubMed  Google Scholar 

  29. Durisic, N. et al. Stoichiometry of the human glycine receptor revealed by direct subunit counting. J. Neurosci. 32, 12915–12920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grudzinska, J. et al. The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45, 727–739 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Z., Taran, E., Webb, T. & Lynch, J. Stoichiometry and subunit arrangement of α1β glycine receptors as determined by atomic force microscopy. Biochemistry 51, 5229–5231 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Hanus, C., Vannier, C. & Triller, A. Intracellular association of glycine receptor with gephyrin increases its plasma membrane accumulation rate. J. Neurosci. 24, 1119–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Maas, C. et al. Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J. Cell Biol. 172, 441–451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tretter, V. et al. The clustering of GABAA receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor α2 subunits to gephyrin. J. Neurosci. 28, 1356–1365 (2008). This paper provides the first biochemical evidence for a direct interaction between gephyrin and a GABA A R subunit, α2, and shows that it determines the localization of these receptors in specific subpopulations of GABAergic synapses in pyramidal cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tretter, V. et al. Molecular basis of the GABAA receptor α3 subunit interaction with gephyrin. J. Biol. Chem. 286, 37702–37711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mukherjee, J. et al. The residence time of GABAARs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin. J. Neurosci. 31, 14677–14687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kowalczyk, S. et al. Direct binding of GABAA receptor β2 and β3 subunits to gephyrin. Eur. J. Neurosci. 37, 544–554 (2013).

    Article  PubMed  Google Scholar 

  40. Maric, H. M., Mukherjee, J., Tretter, V., Moss, S. J. & Schindelin, H. Gephyrin-mediated GABAA and glycine receptor clustering relies on a common binding site. J. Biol. Chem. 286, 42105–42114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brünig, I., Scotti, E., Sidler, C. & Fritschy, J. M. Intact sorting, targeting, and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J. Comp. Neurol. 443, 43–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Kralic, J. E. et al. Compensatory alteration of inhibitory synaptic circuits in thalamus and cerebellum of GABAA receptor α1 subunit knockout mice. J. Comp. Neurol. 495, 408–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Panzanelli, P. et al. Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J. Physiol. 589, 4959–4980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crestani, F. et al. Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc. Natl Acad. Sci. USA 99, 8980–8985 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Peng, Z. et al. GABAA receptor changes in δ subunit-deficient mice: altered expression of α4 and γ2 subunits in the forebrain. J. Comp. Neurol. 446, 179–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Gunther, U. et al. Benzodiazepine-insensitive mice generated by targeted disruption of the γ2-subunit gene of γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 92, 7749–7753 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Fischer, F. et al. Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J. Comp. Neurol. 427, 634–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kneussel, M. et al. Gephyrin-independent clustering of postsynaptic GABAA receptor subtypes. Mol. Cell. Neurosci. 17, 973–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Levi, S., Logan, S. M., Tovar, K. R. & Craig, A. M. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J. Neurosci. 24, 207–217 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lagier, S. et al. GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc. Natl Acad. Sci. USA 104, 7259–7264 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Peden, D. R. et al. Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones. J. Physiol. 586, 965–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Fritschy, J. M., Panzanelli, P., Kralic, J. E., Vogt, K. E. & Sassoè-Pognetto, M. Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the α1 subunit in Purkinje cells. J. Neurosci. 26, 3245–3255 (2006). This paper demonstrates that postsynaptic clustering of gephyrin in GABAergic synapses depends on the presence of GABA A R and shows mistargeting of GABAergic presynaptic terminals to postsynaptic structures that are normally innervated by glutamatergic synapses in the absence of functional GABAergic transmission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patrizi, A. et al. Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc. Natl Acad. Sci. USA 105, 13151–13156 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Studer, R. et al. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor α3 subunit-null mice. Eur. J. Neurosci. 24, 1307–1315 (2006).

    Article  PubMed  Google Scholar 

  55. Loebrich, S., Bahring, R., Katsuno, T., Tsukita, S. & Kneussel, M. Activated radixin is essential for GABAA receptor α5 subunit anchoring at the actin cytoskeleton. EMBO J. 25, 987–999 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, X. et al. GABAA receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J. Biol. Chem. 287, 27417–27430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Knuesel, I. et al. Altered synaptic clustering of GABAA-receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci. 11, 4457–4462 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Sumita, K. et al. Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J. Neurochem. 100, 154–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Fukaya, M. et al. SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. J. Neurochem. 116, 1122–1137 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Fritschy, J. M., Panzanelli, P. & Tyagarajan, S. K. Molecular and functional heterogeneity of GABAergic synapses. Cell. Mol. Life Sci. 69, 2485–2499 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W. & Craig, A. M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000). References 61 and 62 reveal the powerful synaptogenic action of NLGNs in postsynaptic cells depending on differential trans-interaction with neurexins expressed in presynaptic structures.

    Article  CAS  PubMed  Google Scholar 

  63. Dong, N., Qi, J. S. & Chen, G. Molecular reconstitution of functional GABAergic synapses with expression of neuroligin-2 and GABAA receptors. Mol. Cell. Neurosci. 35, 14–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Hoon, M. et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc. Natl Acad. Sci. USA 108, 3053–3058 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Varoqueaux, F., Jamain, S. & Brose, N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur. J. Cell Biol. 83, 449–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Poulopoulos, A. et al. Homodimerization and isoform-specific heterodimerization of neuroligins. Biochem. J. 446, 321–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Budreck, E. C. & Scheiffele, P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur. J. Neurosci. 26, 1738–1748 (2007).

    Article  PubMed  Google Scholar 

  68. Baudouin, S. et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Sci. Signal. 338, 128–132 (2012).

    CAS  Google Scholar 

  69. Giannone, G. et al. Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep. 3, 1996–2007 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Poulopoulos, A. et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63, 628–642 (2009). This paper reveals a direct interaction between NLGN2 and gephyrin, and proposes a model of how this interaction functionally activates collybistin bound to gephyrin to initiate the formation of GABAergic PSDs and recruit GABA A Rs to these sites.

    Article  CAS  PubMed  Google Scholar 

  71. Varoqueaux, F. et al. Neuroligins determine synapse maturation and function. Neuron 51, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Hoon, M. et al. Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J. Neurosci. 29, 8039–8050 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jedlicka, P. et al. Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo. Cereb. Cortex 21, 357–367 (2011).

    Article  PubMed  Google Scholar 

  74. Gibson, J. R., Huber, K. M. & Südhof, T. C. Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J. Neurosci. 29, 13883–13897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blundell, J. et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav. 8, 114–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Wöhr, M. et al. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behav. Brain Res. 251, 50–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nature Neurosci. 3, 22–29 (2000). This paper reports the identification of collybistin as a RHO GEF that directly interacts with gephyrin and is required for the translocation of gephyrin towards the plasma membrane of non-neuronal cells.

    Article  CAS  PubMed  Google Scholar 

  78. Miller, M. B., Yan, Y., Eipper, B. A. & Mains, R. E. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 19, 255–273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiang, S. et al. The crystal structure of Cdc42 in complex with collybistin II, a gephyrin-interacting guanine nucleotide exchange factor. J. Mol. Biol. 359, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Harvey, K. et al. The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J. Neurosci. 24, 5816–5826 (2004). This paper characterizes major collybistin splice variants and demonstrates the key role of collybistin in gephyrin clustering at GABAergic PSDs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grosskreutz, Y. et al. Identification of a gephyrin-binding motif in the GDP/GTP exchange factor collybistin. Biol. Chem. 382, 1455–1462 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Kalscheuer, V. M. et al. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum. Mutat. 30, 61–68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Körber, C. et al. Effects of distinct collybistin isoforms on the formation of GABAergic synapses in hippocampal neurons. Mol. Cell. Neurosci. 50, 250–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Chiou, T. T. et al. Differential regulation of the postsynaptic clustering of γ-aminobutyric acid type A (GABAA) receptors by collybistin isoforms. J. Biol. Chem. 286, 22456–22468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tyagarajan, S. K., Ghosh, H., Harvey, K. & Fritschy, J. M. Collybistin splice variants differentially interact with gephyrin and Cdc42 to regulate gephyrin clustering at GABAergic synapses. J. Cell Sci. 124, 2786–2796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patrizi, A. et al. Selective localization of collybistin at a subset of inhibitory synapses in brain circuits. J. Comp. Neurol. 520, 130–141 (2011).

    Article  CAS  Google Scholar 

  87. Papadopoulos, T. et al. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J. 26, 3888–3899 (2007). This paper reveals that targeted deletion of Arhgef9 , the gene encoding collybistin, has no effect at glycinergic synapses, whereas it impairs gephyrin and GABA A R clustering in a cell-specific manner across the CNS, affecting synaptic plasticity and anxiety-like behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Papadopoulos, T. et al. Collybistin is required for both the formation and maintenance of GABAergic postsynapses in the hippocampus. Mol. Cell. Neurosci. 39, 161–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Nakajima, K. et al. Molecular motor KIF5A is essential for GABAA receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945–961 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. O'Sullivan, G. A., Kneussel, M., Elazar, Z. & Betz, H. GABARAP is not essential for GABA receptor targeting to the synapse. Eur. J. Neurosci. 22, 2644–2648 (2005).

    Article  PubMed  Google Scholar 

  91. Twelvetrees, A. et al. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65, 53–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meier, J. & Grantyn, R. A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J. Neurosci. 24, 1398–1405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15, 4148–4156 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Charrier, C., Ehrensperger, M. V., Dahan, M., Lévi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26, 8502–8511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Zundert, B. et al. Glycine receptors involved in synaptic transmission are selectively regulated by the cytoskeleton in mouse spinal neurons. J. Neurophysiol. 87, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Allison, D. W., Chervin, A. S., Gelfand, W. I. & Craig, A. M. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci. 20, 4545–4554 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Maas, C. et al. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl Acad. Sci. USA 106, 8731–8736 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Moreno-Lopez, B., de la Cruz, R. R., Pastor, A. M., Delgado-Garcia, J. M. & Alvarez, F. J. Effects of botulinum neurotoxin type A on the expression of gephyrin in cat abducens motoneurons. J. Comp. Neurol. 400, 1–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Giesemann, T. et al. Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J. Neurosci. 23, 8330–8339 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Commun. 243, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Murk, K. et al. Neuronal profilin isoforms are addressed by different signalling pathways. PLoS ONE 7, e34167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 16, 967–976 (1998).

    Article  Google Scholar 

  103. Smith, K. et al. Stabilization of GABAA receptors at endocytic zones is mediated by an AP2 binding motif within the GABAA receptor β3 subunit. J. Neurosci. 32, 2485–2498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heisler, F. et al. Muskelin regulates actin filament- and microtubule-based GABAA receptor transport in neurons. Neuron 70, 66–81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang, R., He, S., Chen, Z., Dillon, G. & Leidenheimer, N. Mechanisms of homomeric α1 glycine receptor endocytosis. Biochemistry 46, 11484–11493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fuhrmann, J. C. et al. Gephyrin interacts with dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci. 22, 5393–5402 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jaffrey, S. R. & Snyder, S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274, 774–777 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Szabadits, E. et al. NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling. J. Neurosci. 31, 5893–5904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Szabadits, E. et al. Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling. J. Neurosci. 27, 8101–8111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Specht, C. et al. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79, 308–321 (2013). This paper reports the quantitative analysis of gephyrin, GABA A Rs and GlyRs in inhibitory synapses in vitro and in vivo using supra-resolution microscopy. Distinct differences in clustering density and regulation are reported between the two types of synapses.

    Article  CAS  PubMed  Google Scholar 

  111. Renner, M., Schweizer, C., Bannai, H., Triller, A. & Lévi, S. Diffusion barriers constrain receptors at synapses. PLoS ONE 7, e43032 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bannai, H. et al. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62, 670–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Calamai, M. et al. Gephyrin oligomerization controls GlyR mobility and synaptic clustering. J. Neurosci. 29, 7639–7648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Specht, C. G. et al. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J. 30, 3842–3853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Charrier, C. et al. A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nature Neurosci. 13, 1388–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Kneussel, M. & Betz, H. Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J. Physiol. 525, 1–9 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kneussel, M. & Betz, H. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci. 23, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Machado, P. et al. Heat shock cognate protein 70 regulates gephyrin clustering. J. Neurosci. 31, 3–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saiepour, L. et al. Complex role of collybistin and gephyrin in GABAA receptor clustering. J. Biol. Chem. 285, 29623–29631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reddy-Alla, S. et al. PH-domain-driven targeting of collybistin but not Cdc42 activation is required for synaptic gephyrin clustering. Eur. J. Neurosci. 31, 1173–1184 (2010).

    Article  PubMed  Google Scholar 

  121. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shipman, S. L. & Nicoll, R. A. Dimerization of postsynaptic neuroligin drives synaptic assembly via transsynaptic clustering of neurexin. Proc. Natl Acad. Sci. USA 109, 19432–19437 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Pettem, K. L., Yokomaku, D., Takahashi, H., Ge, Y. & Craig, A. M. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. J. Cell Biol. 200, 321–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee, K. et al. MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. Proc. Natl Acad. Sci. USA 110, 336–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Tyagarajan, S. K. et al. Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin. Proc. Natl Acad. Sci. USA 108, 379–384 (2011). This paper reports the identification of gephyrin residue Ser270 as a target for GSK3β-mediated phosphorylation to regulate the density of GABAergic synapses and the frequency of miniature inhibitory postsynaptic currents in vitro , which also requires activation of the calcium-dependent protein calpain.

    Article  CAS  PubMed  Google Scholar 

  126. Kuhse, J. et al. Phosphorylation of gephyrin in hippocampal neurons by cyclin-dependent kinase CDK5 at Ser-270 is dependent on collybistin. J. Biol. Chem. 287, 30952–30966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Frola, E. et al. Synaptic competition sculpts the development of GABAergic axo-dendritic but not perisomatic synapses. PLoS ONE 8, e56311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, A. et al. TrkB (tropomyosin-related kinase B) controls the assembly and maintenance of GABAergic synapses in the cerebellar cortex. J. Neurosci. 31, 2769–2780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Takahashi, H. et al. Selective control of inhibitory synapse development by Slitrk3–PTPδ trans-synaptic interaction. Nature Neurosci. 15, 389–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Chiu, C. et al. Compartmentalization of GABAergic inhibition by dendritic spines. Sci. Signal. 340, 759–762 (2013).

    CAS  Google Scholar 

  131. Chen, J. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361–373 (2012). This paper reports rapid structural changes, which were visualized by two-photon imaging in vivo , that affect both GABAergic and glutamatergic synapses on cortical neurons and that are modulated by monocular deprivation in adult mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Woo, J. et al. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. J. Cell Biol. 201, 929–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tyagarajan, S. et al. Extracellular signal-regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism. J. Biol. Chem. 288, 9634–9647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fang, C. et al. GODZ-mediated palmitoylation of GABAA receptors is required for normal assembly and function of GABAergic inhibitory synapses. J. Neurosci. 26, 12758–12768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arancibia-Cárcamo, I. et al. Ubiquitin-dependent lysosomal targeting of GABAA receptors regulates neuronal inhibition. Proc. Natl Acad. Sci. USA 106, 17552–17557 (2009).

    Article  PubMed  Google Scholar 

  136. Luscher, B., Fuchs, T. & Kilpatrick, C. L. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70, 385–409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lushnikova, I., Skibo, G., Muller, D. & Nikonenko, I. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells. Neuropharmacology 60, 757–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Niwa, F. et al. Gephyrin-independent GABAAR mobility and clustering during plasticity. PLoS ONE 7, e36148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. van Versendaal, D. et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Rui, Y. et al. Activity-dependent regulation of dendritic growth and maintenance by glycogen synthase kinase 3β. Nature Commun. 4, 2628 (2013).

    Article  CAS  Google Scholar 

  141. Castillo, P., Chiu, C. & Carroll, R. Long-term plasticity at inhibitory synapses. Curr. Opin. Neurobiol. 21, 328–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Inoue, W. et al. Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nature Neurosci. 16, 605–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Kullmann, D., Moreau, A., Bakiri, Y. & Nicholson, E. Plasticity of inhibition. Neuron 75, 951–962 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Marsden, K. C., Beattie, J. B., Friedenthal, J. & Carroll, R. C. NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J. Neurosci. 27, 14326–14337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Muir, J. et al. NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit. Proc. Natl Acad. Sci. USA 107, 16679–16684 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Gross, G. et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78, 971–985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pallotto, M. et al. Early formation of GABAergic synapses governs the development of adult-born neurons in the olfactory bulb. J. Neurosci. 32, 9103–9115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Reiss, J. et al. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am. J. Hum. Genet. 68, 208–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Butler, M. et al. Autoimmunity to gephyrin in Stiff-Man syndrome. Neuron 26, 307–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Rees, M. I. et al. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J. Biol. Chem. 278, 24688–24696 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Grosskreutz, Y., Betz, H. & Kneussel, M. Rescue of molybdenum cofactor biosynthesis in gephyrin-deficient mice by a Cnx1 transgene. Biochem. Biophys. Res. Com. 301, 450–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Harvey, R. J., Topf, M., Harvey, K. & Rees, M. I. The genetics of hyperekplexia: more than startle! Trends Genet. 24, 439–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Förstera, B. et al. Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 133, 3778–3794 (2010).

    Article  PubMed  Google Scholar 

  154. Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62, 42–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Rudolph, U. & Möhler, H. GABAA receptor subtypes: therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu. Rev. Pharmacol. Toxicol. 54, 483–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Shen, Q., Fuchs, T., Sahir, N. & Luscher, B. GABAergic control of critical developmental periods for anxiety- and depression-related behavior in mice. PLoS ONE 7, e47441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Luscher, B., Shen, Q. & Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 16, 383–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Chattopadhyaya, B. et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci. 24, 9598–9611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Coghlan, S. et al. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci. Biobehav. Rev. 36, 2044–2055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Paluszkiewicz, S., Martin, B. & Huntsman, M. Fragile X syndrome: the GABAergic system and circuit dysfunction. Dev. Neurosci. 33, 349–364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Belaidi, A. & Schwarz, G. Metal insertion into the molybdenum cofactor: product-substrate channelling demonstrates the functional origin of domain fusion in gephyrin. Biochem. J. 450, 149–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Paarmann, I., Schmitt, B., Meyer, B., Karas, M. & Betz, H. Mass spectrometric analysis of glycine receptor-associated gephyrin splice variants. J. Biol. Chem. 281, 34918–34925 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Bedet, C. et al. Regulation of gephyrin assembly and glycine receptor synaptic stability. J. Biol. Chem. 281, 30046–30056 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Saiyed, T. et al. Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J. Biol. Chem. 282, 5625–5632 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992). This paper provides the first detailed analysis of gephyrin splice variants and their domain structure, providing the basis for analysing their function and regulation in the CNS.

    Article  CAS  PubMed  Google Scholar 

  167. David-Watine, B. The human gephyrin (GPHN) gene: structure, chromosome localization and expression in non-neuronal cells. Gene 271, 239–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Schwarz, G., Schrader, N., Mendel, R. R., Hecht, H. J. & Schindelin, H. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. J. Mol. Biol. 312, 405–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Sola, M., Kneussel, M., Heck, I. S., Betz, H. & Weissenhorn, W. X-ray crystal structure of the trimeric N-terminal domain of gephyrin. J. Biol. Chem. 276, 25294–25301 (2001). References 168 and 169 report the crystal structure of the gephyrin G domain and thereby provide insight into its function in molybdenum cofactor biosynthesis and as a scaffolding protein at inhibitory synapses.

    Article  CAS  PubMed  Google Scholar 

  170. Schrader, N. et al. Biochemical characterization of the high affinity binding between the glycine receptor and gephyrin. J. Biol. Chem. 279, 18733–18741 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Kim, E. Y. et al. Deciphering the structural framework of glycine receptor anchoring by gephyrin. EMBO J. 25, 1385–1395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sola, M. et al. Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO J. 23, 2510–2519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Herweg, J. & Schwarz, G. Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J. Biol. Chem. 287, 12645–12656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sander, B. et al. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr. D Biol. Crystallogr. 69, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Demirkan, G., Yu, K., Boylan, J. M., Salomon, A. R. & Gruppuso, P. A. Phosphoproteomic profiling of in vivo signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1). PLoS ONE 6, e21729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zita, M. M. et al. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J. 26, 1761–1771 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Huttlin, E. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wuchter, J. et al. A comprehensive small interfering RNA screen identifies signaling pathways required for gephyrin clustering. J. Neurosci. 32, 14821–14834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bausen, M., Weltzien, F., Betz, H. & O'Sullivan, G. A. Regulation of postsynaptic gephyrin cluster size by protein phosphatase 1. Mol. Cell. Neurosci. 44, 201–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Kang, R. et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456, 904–909 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schwer, B. et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8, 604–606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Scheschonka, A., Tang, Z. & Betz, H. Sumoylation in neurons: nuclear and synaptic roles? Trends Neurosci. 30, 85–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Wilkinson, K., Nakamura, Y. & Henley, J. Targets and consequences of protein SUMOylation in neurons. Brain Res. Rev. 64, 195–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chamberlain, S. et al. SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity. Nature Neurosci. 15, 845–852 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Jaafari, N. et al. SUMOylation is required for glycine-induced increases in AMPA receptor surface expression (ChemLTP) in hippocampal neurons. PLoS ONE 8, e52345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tyagarajan, S. K. et al. Proteins involved in the SUMO pathway modulate gephyrin scaffolding and GABAergic transmission. Soc. Neurosci. Abstr. 745.12 (2012).

  188. Zadran, S. et al. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. J. Neurosci. 30, 1086–1095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Puskarjov, M., Ahmad, F., Kaila, K. & Blaesse, P. Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J. Neurosci. 32, 11356–11364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Greer, P. & Greenberg, M. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59, 846–860 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Ch'ng, T. et al. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150, 207–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jordan, B., Fernholz, B., Khatri, L. & Ziff, E. Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons. Nature Neurosci. 10, 427–435 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Guo, J. U. et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neurosci. 14, 1345–1351 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Schratt, G. microRNAs at the synapse. Nature Rev. Neurosci. 10, 842–849 (2009).

    Article  CAS  Google Scholar 

  195. Iijima, T. et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147, 1601–1614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cajigas, I. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012). This paper reports the characterization of over 2,500 mRNA transcripts localized in axons or dendrites of the hippocampus neuropile, which encode, among others, numerous synaptic molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kelleher, R. J., Govindarajan, A. & Tonegawa, S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Paradis, S. et al. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53, 217–232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Siegel, G. et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biol. 11, 705–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Flavell, S. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ramming, M., Betz, H. & Kirsch, J. Analysis of the promoter region of the murine gephyrin gene. FEBS Lett. 405, 137–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  202. Licatalosi, D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Panzanelli, P. et al. Early synapse formation in developing interneurons of the adult olfactory bulb. J. Neurosci. 29, 15039–15052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swiss National Science Foundation. We are grateful to P. Panzanelli (University of Turin, Italy) for the fruitful collaboration and for providing figure 1D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Fritschy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Gephyrin-interacting molecules (PDF 240 kb)

Supplementary information S2 (figure)

The three domains of gephyrin are indicated by their name (G, C, E). (PDF 184 kb)

PowerPoint slides

Glossary

Postsynaptic density

(PSD). A generic term derived from the ultrastructural appearance of the postsynaptic membrane, which is thicker and more electron-dense than the plasma membrane. This owes to an accumulation of molecules (for example, trans-synaptic extracellular matrix proteins, neurotransmitter receptors and effector proteins) at such regions, which are held together by scaffolding proteins that are bound to the actin cytoskeleton.

Inhibitory neurotransmission

Inhibitory neurotransmission may be mediated by several neurotransmitters, particularly GABA and glycine, which lower the resting membrane potential and increase membrane conductance of neurons by activating ionotropic receptors and, in the case of GABA, reduce excitability of neurons by promoting G protein-mediated activation of voltage-gated potassium and inhibition of calcium channels.

Post-translational modifications

Structural changes (for example, the formation of disulphide bonds between two amino acids) or reversible attachment of functional residues (for example, a phosphate or acetate group), a small protein (for example, ubiquitin or small ubiquitin-related modifier (SUMO)) or a lipid (for example, palmitic acid) to specific residues in a protein, which are mediated by a dedicated enzyme or enzymatic pathway and confer novel properties to the modified protein (for example, functional activation, membrane anchorage or differential targeting).

Cys-loop ligand-gated ion channels

A subfamily of neurotransmitter receptors, comprising the prototypic nicotinic acetylcholine receptor, type A GABA (GABAA) receptors, glycine receptors, and 5-hydroxytryptamine type 3 receptors; these receptors are integral ion channels that mediate fast synaptic transmission and have a pentameric homo- or heteromeric subunit structure.

Dystroglycan

A protein that comprises two non-covalently bound protein products, α-dystroglycan (an extracellular matrix protein) and β-dystroglycan (a transmembrane protein), which are encoded from two exons of DAG1; the proteins products are key constituents of the dystrophin–glycoprotein complex (DGC).

Protein scaffold

A high-order molecular arrangement of proteins, forming a highly structured, crystal-like lattice by self-assembly or through specific protein interaction motives and serving to anchor other proteins (notably neurotransmitter receptors and effector molecules) at specific subcellular sites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagarajan, S., Fritschy, JM. Gephyrin: a master regulator of neuronal function?. Nat Rev Neurosci 15, 141–156 (2014). https://doi.org/10.1038/nrn3670

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing