Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Silent synapses and the emergence of a postsynaptic mechanism for LTP

A Corrigendum to this article was published on 04 February 2009

Key Points

  • Silent synapses, which cannot mediate neurotransmission because they lack functional AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors), were discovered in the hippocampal CA1 subfield amidst the debate over whether long-term potentiation (LTP) resulted from a presynaptic or a postsynaptic modification. Their existence helped to explain what had seemed to be contradictory findings regarding the locus of LTP expression.

  • Silent synapses — which are found not only in the hippocampus but also in many areas of the brain and spinal cord — exhibit a developmental gradient, declining in prevalence over the first few days to weeks of life in rodents.

  • Synapse unsilencing occurs when coordinated pre- and postsynaptic activity — as encountered during an LTP induction protocol — results in the activation of NMDARs (N-methyl-D-aspartate receptors) and the subsequent recruitment of AMPARs to the postsynaptic membrane. Synapse unsilencing is a mechanism of LTP expression.

  • Some groups have proposed that synaptic silence may result from slow glutamate diffusion rather than from absent AMPARs. Glutamate spillover from adjacent synapses and impaired release from an immature presynaptic terminal are two models discussed.

  • However, the preponderance of evidence favours the hypothesis that synaptic silence results instead from the physical absence of functional AMPARs at the postsynaptic membrane. Glutamate uncaging experiments have provided the most-direct, unequivocal evidence that LTP and synaptic silence occur by a postsynaptic mechanism.

  • This characterization of silent synapses has culminated in a general acceptance that the movement of AMPARs into and out of synapses accounts for excitatory synaptic plasticity. The next challenge is to identify the molecular underpinnings of AMPAR trafficking.

Abstract

Silent synapses abound in the young brain, representing an early step in the pathway of experience-dependent synaptic development. Discovered amidst the debate over whether long-term potentiation reflects a presynaptic or a postsynaptic modification, silent synapses — which in the hippocampal CA1 subfield are characterized by the presence of NMDA receptors but not AMPA receptors — have stirred some mechanistic controversy of their own. Out of this literature has emerged a model for synapse unsilencing that highlights the central role for postsynaptic AMPA-receptor trafficking in the expression of excitatory synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrophysiological demonstration of silent synapses and their unsilencing.
Figure 2: Silent synapses throughout the brain.
Figure 3: Electron microscopy of developing glutamatergic synapses.
Figure 4: Postsynaptic silence demonstrated by two-photon laser glutamate uncaging.
Figure 5: Silent synapses.

Similar content being viewed by others

References

  1. Malenka, R. C., Kauer, J. A., Perkel, D. J. & Nicoll, R. A. The impact of postsynaptic calcium on synaptic transmission — its role in long-term potentiation. Trends Neurosci. 12, 444–450 (1989).

    CAS  PubMed  Google Scholar 

  2. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995). This paper and reference 3, which was published two months later, first established the presence of hippocampal CA1 silent synapses. Both groups used a minimal-stimulation technique to isolate synapses exhibiting the (now classic) physiological signature of a silent synapse — the presence of N-EPSCs but not A-EPSCs — and both groups went on to show that LTP triggered the rapid recruitment of an AMPAR-mediated response.

    CAS  PubMed  Google Scholar 

  3. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    CAS  PubMed  Google Scholar 

  4. Merrill, E. G. & Wall, P. D. Factors forming the edge of a receptive field: the presence of relatively ineffective afferent terminals. J. Physiol. 226, 825–846 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wall, P. D. The presence of ineffective synapses and the circumstances which unmask them. Philos. Trans. R. Soc. Lond. B Biol. Sci. 278, 361–372 (1977).

    CAS  PubMed  Google Scholar 

  6. Malenka, R. C. & Nicoll, R. A. Silent synapses speak up. Neuron 19, 473–476 (1997).

    CAS  PubMed  Google Scholar 

  7. Redman, S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev. 70, 165–198 (1990).

    CAS  PubMed  Google Scholar 

  8. Kerchner, G. A., Li, P. & Zhuo, M. Speaking out of turn: a role for silent synapses in pain. IUBMB Life 48, 251–256 (1999).

    CAS  PubMed  Google Scholar 

  9. Faber, D. S., Lin, J. W. & Korn, H. Silent synaptic connections and their modifiability. Ann. NY Acad. Sci. 627, 151–164 (1991).

    CAS  PubMed  Google Scholar 

  10. Charpier, S., Behrends, J. C., Triller, A., Faber, D. S. & Korn, H. “Latent” inhibitory connections become functional during activity-dependent plasticity. Proc. Natl Acad. Sci. USA 92, 117–120 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolszon, L. & Faber, D. The effects of postsynaptic levels of cyclic AMP on excitatory and inhibitory responses of an identified central neuron. J. Neurosci. 9, 784–797 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, J. W. & Faber, D. S. Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. II. Plasticity of excitatory postsynaptic potentials. J. Neurosci. 8, 1313–1325 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, J. W. & Faber, D. S. Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. I. Characteristics of electrotonic and chemical postsynaptic potentials. J. Neurosci. 8, 1302–1312 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wojtowicz, J. M., Marin, L. & Atwood, H. L. Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction. J. Neurosci. 14, 3688–3703 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wojtowicz, J. M., Smith, B. R. & Atwood, H. L. Activity-dependent recruitment of silent synapses. Ann. NY Acad. Sci. 627, 169–179 (1991).

    CAS  PubMed  Google Scholar 

  16. Stevens, C. F. Quantal release of neurotransmitter and long-term potentiation. Cell 72, 55–63 (1993).

    PubMed  Google Scholar 

  17. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    CAS  PubMed  Google Scholar 

  18. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911–917 (1988).

    CAS  PubMed  Google Scholar 

  19. Muller, D., Joly, M. & Lynch, G. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697 (1988).

    CAS  PubMed  Google Scholar 

  20. Muller, D. & Lynch, G. Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc. Natl Acad. Sci. USA 85, 9346–9350 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kullmann, D. M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron 12, 1111–1120 (1994). As one of the last milestones in the journey that ultimately led to the discovery of silent synapses in the hippocampus, this study elegantly illustrated that the quantal content for N-EPSCs is paradoxically different from the quantal content for A-EPSCs, and that only the latter changes during LTP. Kullmann proposed that LTP-induced uncovering of latent AMPAR clusters could explain this finding, in the absence of any change in presynaptic glutamate release.

    CAS  PubMed  Google Scholar 

  22. Bekkers, J. M. & Stevens, C. F. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233 (1989).

    CAS  PubMed  Google Scholar 

  23. Patneau, D. K. & Mayer, M. L. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Perkel, D. J. & Nicoll, R. A. Evidence for all-or-none regulation of neurotransmitter release: implications for long-term potentiation. J. Physiol. 471, 481–500 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tong, G. & Jahr, C. E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12, 51–59 (1994).

    CAS  PubMed  Google Scholar 

  26. Choi, S., Klingauf, J. & Tsien, R. W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nature Neurosci. 3, 330–336 (2000).

    CAS  PubMed  Google Scholar 

  27. Asztely, F., Wigstrom, H. & Gustafsson, B. The relative contribution of NMDA receptor channels in the expression of long-term potentiation in the hippocampal CA1 region. Eur. J. Neurosci. 4, 681–690 (1992).

    PubMed  Google Scholar 

  28. Gustafsson, B., Huang, Y. Y. & Wigstrom, H. Phorbol ester-induced synaptic potentiation differs from long-term potentiation in the guinea pig hippocampus in vitro. Neurosci. Lett. 85, 77–81 (1988).

    CAS  PubMed  Google Scholar 

  29. Malinow, R. & Tsien, R. W. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346, 177–180 (1990). This paper was groundbreaking for two reasons: first, it marked the first time that LTP was induced in a hippocampal slice by a pairing protocol during whole-cell patch-clamp recording; and second, because the signal-to-noise ratio of this technique is superior to that of intracellular sharp-electrode recordings, the authors could perform quantal analysis on EPSCs evoked by minimal stimulation and demonstrate an increase in quantal content and a decrease in synaptic failures following LTP.

    CAS  PubMed  Google Scholar 

  30. Bekkers, J. M. & Stevens, C. F. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346, 724–729 (1990). Published a month after reference 29, this paper yielded similar findings.

    CAS  PubMed  Google Scholar 

  31. Voronin, L. L. Long-term potentiation in the hippocampus. Neuroscience 10, 1051–1069 (1983).

    CAS  PubMed  Google Scholar 

  32. Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    CAS  PubMed  Google Scholar 

  33. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    CAS  PubMed  Google Scholar 

  34. Kullmann, D. M. & Nicoll, R. A. Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature 357, 240–244 (1992).

    CAS  PubMed  Google Scholar 

  35. Liao, D., Jones, A. & Malinow, R. Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron 9, 1089–1097 (1992).

    CAS  PubMed  Google Scholar 

  36. Larkman, A., Hannay, T., Stratford, K. & Jack, J. Presynaptic release probability influences the locus of long-term potentiation. Nature 360, 70–73 (1992).

    CAS  PubMed  Google Scholar 

  37. Stricker, C., Field, A. C. & Redman, S. J. Changes in quantal parameters of EPSCs in rat CA1 neurones in vitro after the induction of long-term potentiation. J. Physiol. 490, 443–454 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Edwards, F. A., Konnerth, A. & Sakmann, B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. 430, 213–249 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Edwards, F. LTP is a long term problem. Nature 350, 271–272 (1991).

    CAS  PubMed  Google Scholar 

  40. Larkman, A., Stratford, K. & Jack, J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350, 344–347 (1991).

    CAS  PubMed  Google Scholar 

  41. Faber, D. S. & Korn, H. Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys. J. 60, 1288–1294 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, G., Choi, S. & Tsien, R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    CAS  PubMed  Google Scholar 

  43. Mainen, Z. F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999).

    CAS  PubMed  Google Scholar 

  44. Pankratov, Y. V. & Krishtal, O. A. Distinct quantal features of AMPA and NMDA synaptic currents in hippocampal neurons: implication of glutamate spillover and receptor saturation. Biophys. J. 85, 3375–3387 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science 252, 722–724 (1991).

    CAS  PubMed  Google Scholar 

  46. Manabe, T., Wyllie, D. J., Perkel, D. J. & Nicoll, R. A. Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J. Neurophysiol. 70, 1451–1459 (1993).

    CAS  PubMed  Google Scholar 

  47. Kullmann, D. M., Erdemli, G. & Asztély, F. LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17, 461–474 (1996).

    CAS  PubMed  Google Scholar 

  48. Collingridge, G. L. Long-term potentiation. A question of reliability. Nature 371, 652–653 (1994).

    CAS  PubMed  Google Scholar 

  49. Lisman, J. E. & Harris, K. M. Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141–147 (1993).

    CAS  PubMed  Google Scholar 

  50. Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    CAS  PubMed  Google Scholar 

  51. Lledo, P. M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl Acad. Sci. USA 92, 11175–11179 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsia, A. Y., Malenka, R. C. & Nicoll, R. A. Development of excitatory circuitry in the hippocampus. J. Neurophysiol. 79, 2013–2024 (1998).

    CAS  PubMed  Google Scholar 

  53. Liao, D. & Malinow, R. Deficiency in induction but not expression of LTP in hippocampal slices from young rats. Learn. Mem. 3, 138–149 (1996).

    CAS  PubMed  Google Scholar 

  54. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996). Another early demonstration of silent CA1 synapses (see also references 2 and 3), this paper was the first to provide an explicit analysis of the developmental time course of their expression.

    CAS  PubMed  Google Scholar 

  55. Rumpel, S., Kattenstroth, G. & Gottmann, K. Silent synapses in the immature visual cortex: layer-specific developmental regulation. J. Neurophysiol. 91, 1097–1101 (2004).

    PubMed  Google Scholar 

  56. Adesnik, H., Li, G., During, M. J., Pleasure, S. J. & Nicoll, R. A. NMDA receptors inhibit synapse unsilencing during brain development. Proc. Natl Acad. Sci. USA 105, 5597–5602 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hall, B. J. & Ghosh, A. Regulation of AMPA receptor recruitment at developing synapses. Trends Neurosci. 31, 82–89 (2008).

    CAS  PubMed  Google Scholar 

  58. Hall, B. J., Ripley, B. & Ghosh, A. NR2B signaling regulates the development of synaptic AMPA receptor current. J. Neurosci. 27, 13446–13456 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Luthi, A., Schwyzer, L., Mateos, J. M., Gahwiler, B. H. & McKinney, R. A. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nature Neurosci. 4, 1102–1107 (2001).

    CAS  PubMed  Google Scholar 

  60. Xiao, M. Y., Wasling, P., Hanse, E. & Gustafsson, B. Creation of AMPA-silent synapses in the neonatal hippocampus. Nature Neurosci. 7, 236–243 (2004).

    CAS  PubMed  Google Scholar 

  61. Abrahamsson, T., Gustafsson, B. & Hanse, E. Reversible synaptic depression in developing rat CA3–CA1 synapses explained by a novel cycle of AMPA silencing-unsilencing. J. Neurophysiol. 98, 2604–2611 (2007).

    CAS  PubMed  Google Scholar 

  62. Montgomery, J. M. & Madison, D. V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33, 765–777 (2002).

    CAS  PubMed  Google Scholar 

  63. Gasparini, S., Saviane, C., Voronin, L. L. & Cherubini, E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc. Natl Acad. Sci. USA 97, 9741–9746 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maggi, L., Le Magueresse, C., Changeux, J. P. & Cherubini, E. Nicotine activates immature “silent” connections in the developing hippocampus. Proc. Natl Acad. Sci. USA 100, 2059–2064 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Montgomery, J. M., Pavlidis, P. & Madison, D. V. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron 29, 691–701 (2001). By simultaneously patch-clamping both the pre- and the postsynaptic neurons during recordings of silent synapses, these authors achieved a level of experimental control superior to contemporary methods of minimal extracellular stimulation and refuted many of the arguments for a presynaptic mechanism for synaptic silence.

    CAS  PubMed  Google Scholar 

  66. Kullmann, D. M. & Asztely, F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci. 21, 8–14 (1998).

    CAS  PubMed  Google Scholar 

  67. Selig, D. K., Hjelmstad, G. O., Herron, C., Nicoll, R. A. & Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426 (1995).

    CAS  PubMed  Google Scholar 

  68. Manabe, T. & Nicoll, R. A. Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science 265, 1888–1892 (1994).

    CAS  PubMed  Google Scholar 

  69. Diamond, J. S. Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J. Neurosci. 21, 8328–8338 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Diamond, J. S. A broad view of glutamate spillover. Nature Neurosci. 5, 291–292 (2002).

    CAS  PubMed  Google Scholar 

  71. Arnth-Jensen, N., Jabaudon, D. & Scanziani, M. Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nature Neurosci. 5, 325–331 (2002).

    CAS  PubMed  Google Scholar 

  72. Lozovaya, N. A., Kopanitsa, M. V., Boychuk, Y. A. & Krishtal, O. A. Enhancement of glutamate release uncovers spillover-mediated transmission by N-methyl-D-aspartate receptors in the rat hippocampus. Neuroscience 91, 1321–1330 (1999).

    CAS  PubMed  Google Scholar 

  73. Diamond, J. S., Bergles, D. E. & Jahr, C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21, 425–433 (1998). This paper, together with reference 74 (published back-to-back in the same issue), established that the magnitude of a glutamate-transporter current in CA1 astrocytes is a reliable surrogate for synaptic glutamate concentration, and that this concentration does not change after LTP.

    CAS  PubMed  Google Scholar 

  74. Lüscher, C., Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    PubMed  Google Scholar 

  75. Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    CAS  PubMed  Google Scholar 

  76. Arancio, O. et al. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87, 1025–1035 (1996).

    CAS  PubMed  Google Scholar 

  77. Schuman, E. M. & Madison, D. V. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503–1506 (1991).

    CAS  PubMed  Google Scholar 

  78. Son, H. et al. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87, 1015–1023 (1996).

    CAS  PubMed  Google Scholar 

  79. Cummings, J. A., Nicola, S. M. & Malenka, R. C. Induction in the rat hippocampus of long-term potentiation (LTP) and long-term depression (LTD) in the presence of a nitric oxide synthase inhibitor. Neurosci. Lett. 176, 110–114 (1994).

    CAS  PubMed  Google Scholar 

  80. Selig, D. K. et al. Examination of the role of cGMP in long-term potentiation in the CA1 region of the hippocampus. Learn. Mem. 3, 42–48 (1996).

    CAS  PubMed  Google Scholar 

  81. Serulle, Y. et al. A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56, 670–688 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nature Rev. Neurosci. 6, 863–876 (2005).

    CAS  Google Scholar 

  83. Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624 (1990).

    CAS  PubMed  Google Scholar 

  84. Tong, G., Malenka, R. C. & Nicoll, R. A. Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity. Neuron 16, 1147–1157 (1996).

    CAS  PubMed  Google Scholar 

  85. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. 507, 237–247 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. Neuron 21, 1443–1451 (1998).

    CAS  PubMed  Google Scholar 

  87. Ward, B. et al. State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron 52, 649–661 (2006).

    CAS  PubMed  Google Scholar 

  88. Zakharenko, S. S., Zablow, L. & Siegelbaum, S. A. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neurosci. 4, 711–717 (2001).

    CAS  PubMed  Google Scholar 

  89. Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neurosci. 2, 37–43 (1999).

    CAS  PubMed  Google Scholar 

  90. Richmond, S. A. et al. Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience 75, 69–82 (1996).

    CAS  PubMed  Google Scholar 

  91. Pickard, L., Noel, J., Henley, J. M., Collingridge, G. L. & Molnar, E. Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J. Neurosci. 20, 7922–7931 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liao, D., Scannevin, R. H. & Huganir, R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J. Neurosci. 21, 6008–6017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, W.-Y. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    CAS  PubMed  Google Scholar 

  94. Pickard, L. et al. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology 41, 700–713 (2001).

    CAS  PubMed  Google Scholar 

  95. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

  96. Petralia, R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature Neurosci. 2, 31–36 (1999).

    CAS  PubMed  Google Scholar 

  97. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. B. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature Neurosci. 2, 618–624 (1999).

    CAS  PubMed  Google Scholar 

  99. Bagal, A. A., Kao, J. P., Tang, C. M. & Thompson, S. M. Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc. Natl Acad. Sci. USA 102, 14434–14439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Busetto, G., Higley, M. J. & Sabatini, B. L. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J. Physiol. 586, 1519–1527 (2008). By using glutamate uncaging to trigger uEPSCs and thus to bypass the presynaptic terminal, this paper was the first to demonstrate unequivocally that silent synapses express no functional AMPARs in the postsynaptic membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

    CAS  PubMed  Google Scholar 

  103. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004). This paper was the first to induce LTP at single spines through repetitive glutamate uncaging. It demonstrated conclusively that LTP could occur by a purely postsynaptic mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, Y.-P., Holbro, N. & Oertner, T. G. Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII. Proc. Natl Acad. Sci. USA 105, 12039–12044 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    CAS  PubMed  Google Scholar 

  106. Shi, S.-H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999). In hippocampal neurons that expressed a recombinant GluR1 AMPAR subunit tagged with GFP, these authors observed rapid delivery of tagged receptors to the postsynaptic membrane from intracellular stores following LTP induction, providing evidence that LTP occurs by trafficking AMPARs to synapses.

    CAS  PubMed  Google Scholar 

  107. Adesnik, H., Nicoll, R. A. & England, P. M. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48, 977–985 (2005).

    CAS  PubMed  Google Scholar 

  108. Lynch, G. & Baudry, M. The biochemistry of memory: a new and specific hypothesis. Science 224, 1057–1063 (1984).

    CAS  PubMed  Google Scholar 

  109. Wang, R. et al. TARP proteins have fundamental roles in the gating of glutamate receptors and the tuning of synaptic function. Neuron (in the press).

  110. Walker, C. S. et al. Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins. Proc. Natl Acad. Sci. USA 103, 10781–10786 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nicoll, R. A., Tomita, S. & Bredt, D. S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006).

    CAS  PubMed  Google Scholar 

  112. Manabe, T., Renner, P. & Nicoll, R. A. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50–55 (1992).

    CAS  PubMed  Google Scholar 

  113. Isaac, J. T., Hjelmstad, G. O., Nicoll, R. A. & Malenka, R. C. Long-term potentiation at single fiber inputs to hippocampal CA1 pyramidal cells. Proc. Natl Acad. Sci. USA 93, 8710–8715 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. Bidirectional control of quantal size by synaptic activity in the hippocampus. Science 271, 1294–1297 (1996).

    CAS  PubMed  Google Scholar 

  115. Benke, T. A., Luthi, A., Isaac, J. T. R. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    CAS  PubMed  Google Scholar 

  116. Andrásfalvy, B. K. & Magee, J. C. Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurons. J. Physiol. 559, 543–554 (2004).

    PubMed  PubMed Central  Google Scholar 

  117. Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    CAS  PubMed  Google Scholar 

  118. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  PubMed  Google Scholar 

  119. Song, I. & Huganir, R. L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    CAS  PubMed  Google Scholar 

  120. Emptage, N. J., Reid, C. A., Fine, A. & Bliss, T. V. P. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38, 797–804 (2003).

    CAS  PubMed  Google Scholar 

  121. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1909).

    Google Scholar 

  122. Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    CAS  PubMed  Google Scholar 

  123. Blakemore, C. & Hillman, P. An attempt to assess the effects of monocular deprivation and strabismus on synaptic efficiency in the kitten's visual cortex. Exp. Brain Res. 30, 187–202 (1977).

    CAS  PubMed  Google Scholar 

  124. Rumpel, S., Hatt, H. & Gottmann, K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18, 8863–8874 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shah, R. D. & Crair, M. C. Retinocollicular synapse maturation and plasticity are regulated by correlated retinal waves. J. Neurosci. 28, 292–303 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Losi, G., Prybylowski, K., Fu, Z., Luo, J. H. & Vicini, S. Silent synapses in developing cerebellar granule neurons. J. Neurophysiol. 87, 1263–1270 (2002).

    CAS  PubMed  Google Scholar 

  127. Balland, B., Lachamp, P., Kessler, J.-P. & Tell, F. Silent synapses in developing rat nucleus tractus solitarii have AMPA receptors. J. Neurosci. 28, 4624–4634 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lo, F.-S. & Erzurumlu, R. S. Conversion of functional synapses into silent synapses in the trigeminal brainstem after neonatal peripheral nerve transection. J. Neurosci. 27, 4929–4934 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Park, M., Penick, E. C., Edwards, J. G., Kauer, J. A. & Ehlers, M. D. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975 (2000).

    Google Scholar 

Download references

Acknowledgements

We thank A. Jackson, W. Lu, A. Milstein and A. Tzingounis for their thoughtful comments on the manuscript. R.A.N. is supported by grants from the US National Institutes of Health and G.A.K. was supported by the Larry L. Hillblom Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Nicoll.

Related links

Related links

FURTHER INFORMATION

Roger Nicoll's homepage

Glossary

CA1

The area of the hippocampus that lies at the end of the hippocampal trisynaptic circuit.

Silent synapse

Aside from the exceptions indicated in this Review, silent synapses are synapses that exhibit an NMDA-receptor-mediated response but no AMPA-receptor-mediated response.

Excitatory postsynaptic current

(EPSC). The current that is recorded in a voltage-clamped neuron in response to release of synaptic glutamate.

NMDAR

(N-methyl-D-aspartate receptor). The subtype of ionotropic glutamate receptor, containing the subunit NR1 complexed with some combination of the subunits NR2A–NR2D and NR3A or NR3B, that responds selectively to NMDA by gating a cationic channel that is distinguished both by its permeability to Ca2+ and by its voltage-dependent blockade by Mg2+ at the resting membrane potential.

AMPAR

(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor). The subtype of ionotropic glutamate receptor that contains a tetramer of some combination of the subunits GluR1–GluR4, responds selectively to AMPA by gating a monovalent cation current, and mediates most fast excitatory neurotransmission in the brain.

LTP

(Long-term potentiation). A form of synaptic plasticity that is mostly studied in hippocampal CA1 pyramidal neurons but that is found in many other areas of the brain. It is characterized by a persistent enhancement of neurotransmission following an appropriate stimulus (see Hebb's rule).

Pyramidal neurons

The principal cells of the hippocampus and the neocortex. These large cells use glutamate as their neurotransmitter.

Paired pulse facilitation

The phenomenon whereby the amplitude of an EPSC that is triggered shortly (for example, 50 ms) after a prior EPSC is increased relative to that of the prior EPSC, reflecting an increased probability of presynaptic vesicle release and probably resulting from an increased presynaptic Ca2+ concentration.

Pairing

Delivering low-frequency presynaptic stimulation and simultaneously depolarizing the postsynaptic cell. This triggers LTP in a manner that is consistent with Hebb's rule.

Hebb's rule

(or Hebb's postulate). The notion that after a presynaptic neuron and a postsynaptic neuron fire in unison, the efficiency of neurotransmission between them improves.

MK-801

An NMDAR antagonist that is use-dependent (that is, it binds inside the open channel pore only after agonist binding) and poorly reversible (that is, once it is in the pore it binds tightly with a very slow unbinding rate).

Tetanic stimulation

The delivery of a rapid train of presynaptic stimuli through an extracellular stimulating electrode positioned near a bundle of axons, typically to trigger synaptic plasticity.

Glutamate transporters

Transmembrane proteins that bind extracellular glutamate and transport it into astrocytes and neurons, thereby contributing to the cessation of excitatory synaptic transmission after presynaptic glutamate release.

Cyclothiazide

A drug that binds AMPARs, blocking the normal fast desensitization of these receptors to glutamate.

FM1-43

An ampiphilic styryl dye that reversibly partitions into lipid bilayers; after exposing neurons to this dye, inducing neuronal activity and then washing off the dye, recycled presynaptic vesicles retain a fluorescent signal, which allows visualization of presynaptic boutons under light microscopy.

Iontophoresis

Ejection of a charged chemical from a high-resistance glass microelectrode through the delivery of a current pulse.

Autapse

A synapse formed by a neuron onto itself, usually in the context of isolated single-neuron microisland cultures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerchner, G., Nicoll, R. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 9, 813–825 (2008). https://doi.org/10.1038/nrn2501

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing