Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cadherin superfamily in neuronal connections and interactions

Key Points

  • The organization of neuronal circuits involves a number of processes that require cell–cell recognition and contacts. Cadherins are a family of cell–cell adhesion molecules comprising more than 100 members in vertebrates, which are grouped into subfamilies including classic cadherins, Flamingo/CELSRs and protocadherins, and are thought to have roles in various steps of neuronal cell interactions.

  • N-cadherin and other vertebrate classic cadherins are essential not only for early morphogenesis of neural tissues but also for correct axon migration towards target areas, and for the extension of neuronal dendrites.

  • Drosophila melanogaster N-cadherin (DN-cadherin) has been shown to be crucial for the formation of axonal connections with target neurons in both the visual and olfactory systems, and also for confining dendritic arborizations to specific glomeruli in these systems. The activity of DN-cadherin during the axon targeting seems to be controlled by cytoplasmic proteins including leukocyte antigen-related-receptor protein tyrosine phosphatase (LAR).

  • Flamingo, a seven-pass transmembrane cadherin, is required for the correct targeting of retinal axons in visual circuits in D. melanogaster. A vertebrate homologue of Flamingo, CELSR2, regulates dendritic arbor patterning in the cerebellum, and another homologue, CELSR3, is important for axon tract formation.

  • Some protocadherins, which show a large diversification due to a unique gene organization, seem to be involved in synapse formation and neuronal survival. However, the biological roles of this subfamily remain largely unknown.

  • In conclusion, members of the cadherin superfamily control axon–target recognition and connections, as well as other types of neuronal interactions in a subfamily-specific manner.

Abstract

Neural development and the organization of complex neuronal circuits involve a number of processes that require cell–cell interaction. During these processes, axons choose specific partners for synapse formation and dendrites elaborate arborizations by interacting with other dendrites. The cadherin superfamily is a group of cell surface receptors that is comprised of more than 100 members. The molecular structures and diversity within this family suggest that these molecules regulate the contacts or signalling between neurons in a variety of ways. In this review I discuss the roles of three subfamilies — classic cadherins, Flamingo/CELSRs and protocadherins — in the regulation of neuronal recognition and connectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawings of cadherin superfamily members.
Figure 2: Effects of classic cadherin dysfunction on retinal morphogenesis and neurite extension.
Figure 3: Effects of DN-cadherin or Flamingo mutation on axon projections in the lamina of the optic lobe.
Figure 4: Effects of DN-cadherin or Flamingo mutation on retinal axon targeting in the medulla.
Figure 5: Cooperation between the nectin and cadherin adhesion systems for establishing synaptic contacts.
Figure 6: Effects of CELSR deficiencies.

Similar content being viewed by others

References

  1. Ghysen, A. Dendritic arbors: a tale of living tiles. Curr. Biol. 13, R427–429 (2003).

    CAS  PubMed  Google Scholar 

  2. Chilton, J. K. Molecular mechanisms of axon guidance. Dev. Biol. 292, 13–24 (2006).

    CAS  PubMed  Google Scholar 

  3. Akins, M. R. & Biederer, T. Cell–cell interactions in synaptogenesis. Curr. Opin. Neurobiol. 16, 83–89 (2006).

    CAS  PubMed  Google Scholar 

  4. Sela-Donenfeld, D. & Wilkinson, D. G. Eph receptors: two ways to sharpen boundaries. Curr. Biol. 15, R210–R212 (2005).

    CAS  PubMed  Google Scholar 

  5. Ahimou, F., Mok, L. P., Bardot, B. & Wesley, C. The adhesion force of Notch with Delta and the rate of Notch signaling. J. Cell Biol. 167, 1217–1229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen, T. & Sudhof, T. C. Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic cell adhesion molecules. J. Biol. Chem. 272, 26032–26039 (1997).

    CAS  PubMed  Google Scholar 

  7. Tepass, U., Truong, K., Godt, D., Ikura, M. & Peifer, M. Cadherins in embryonic and neural morphogenesis. Nature Rev. Mol. Cell Biol. 1, 91–100 (2000).

    CAS  Google Scholar 

  8. Redies, C., Vanhalst, K. & Roy, F. δ-Protocadherins: unique structures and functions. Cell. Mol. Life Sci. 62, 2840–2852 (2005).

    CAS  PubMed  Google Scholar 

  9. Overduin, M. et al. Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267, 386–389 (1995).

    CAS  PubMed  Google Scholar 

  10. Shapiro, L. et al. Structural basis of cell–cell adhesion by cadherins. Nature 374, 327–337 (1995).

    CAS  PubMed  Google Scholar 

  11. Takeichi, M. & Abe, K. Synaptic contact dynamics controlled by cadherin and catenins. Trends Cell Biol. 15, 216–221 (2005).

    CAS  PubMed  Google Scholar 

  12. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455 (1991).

    CAS  PubMed  Google Scholar 

  13. Wheelock, M. J. & Johnson, K. R. Cadherin-mediated cellular signaling. Curr. Opin. Cell Biol. 15, 509–514 (2003).

    CAS  PubMed  Google Scholar 

  14. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α1(E)-catenin is an actin-binding and-bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA 92, 8813–8817 (1995).

    CAS  PubMed  Google Scholar 

  16. Shimoyama, Y., Tsujimoto, G., Kitajima, M. & Natori, M. Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem. J. 349, 159–167 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel, S. D. et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124, 1255–1268 (2006).

    CAS  PubMed  Google Scholar 

  18. Inoue, T., Tanaka, T., Suzuki, S. C. & Takeichi, M. Cadherin-6 in the developing mouse brain: expression along restricted connection systems and synaptic localization suggest a potential role in neuronal circuitry. Dev. Dyn. 211, 338–351 (1998).

    CAS  PubMed  Google Scholar 

  19. Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).

    CAS  PubMed  Google Scholar 

  20. Cox, E. A., Tuskey, C. & Hardin, J. Cell adhesion receptors in C. elegans. J. Cell Sci. 117, 1867–1870 (2004).

    CAS  PubMed  Google Scholar 

  21. Cox, E. A. & Hardin, J. Sticky worms: adhesion complexes in C. elegans. J. Cell Sci. 117, 1885–1897 (2004).

    CAS  PubMed  Google Scholar 

  22. Tepass, U. Genetic analysis of cadherin function in animal morphogenesis. Curr. Opin. Cell Biol. 11, 540–548 (1999).

    CAS  PubMed  Google Scholar 

  23. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997). The first paper to have identified D. melanogaster N-cadherin, demonstrating various defects in axon patterning and migration in D N-cadherin-null embryos.

    CAS  PubMed  Google Scholar 

  24. Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449 (1986).

    CAS  PubMed  Google Scholar 

  25. Hatta, K., Takagi, S., Fujisawa, H. & Takeichi, M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120, 215–227 (1987).

    CAS  PubMed  Google Scholar 

  26. Luo, Y. et al. Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development 128, 459–469 (2001).

    CAS  PubMed  Google Scholar 

  27. Radice, G. L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol. 181, 64–78 (1997).

    CAS  PubMed  Google Scholar 

  28. Erdmann, B., Kirsch, F. P., Rathjen, F. G. & More, M. I. N-cadherin is essential for retinal lamination in the zebrafish. Dev. Dyn. 226, 570–577 (2003).

    CAS  PubMed  Google Scholar 

  29. Malicki, J., Jo, H. & Pujic, Z. Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev. Biol. 259, 95–108 (2003).

    CAS  PubMed  Google Scholar 

  30. Masai, I. et al. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130, 2479–2494 (2003).

    PubMed  Google Scholar 

  31. Lele, Z. et al. parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129, 3281–3294 (2002).

    CAS  PubMed  Google Scholar 

  32. Matsunaga, M., Hatta, K. & Takeichi, M. Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron 1, 289–295 (1988).

    CAS  PubMed  Google Scholar 

  33. Inoue, A. & Sanes, J. R. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431 (1997).

    CAS  PubMed  Google Scholar 

  34. Treubert-Zimmermann, U., Heyers, D. & Redies, C. Targeting axons to specific fiber tracts in vivo by altering cadherin expression. J. Neurosci. 22, 7617–7626 (2002).

    CAS  PubMed  Google Scholar 

  35. Manabe, T. et al. Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci. 15, 534–546 (2000).

    CAS  PubMed  Google Scholar 

  36. Kintner, C. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell 69, 225–236 (1992).

    CAS  PubMed  Google Scholar 

  37. Fujimori, T. & Takeichi, M. Disruption of epithelial cell–cell adhesion by exogenous expression of a mutated nonfunctional N-cadherin. Mol. Biol. Cell 4, 37–47 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70, 293–301 (1992).

    CAS  PubMed  Google Scholar 

  39. Riehl, R. et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837–848 (1996).

    CAS  PubMed  Google Scholar 

  40. Tanabe, K. et al. Cadherin is required for dendritic morphogenesis and synaptic terminal organization of retinal horizontal cells. Development 133, 4085–4096 (2006). Cadherin activities are shown to be required for the normal extension of horizontal cell dendrites in the retina. Their synaptic formation with photoreceptors is also impaired.

    CAS  PubMed  Google Scholar 

  41. Taniguchi, H., Kawauchi, D., Nishida, K. & Murakami, F. Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain. Development 133, 1923–1931 (2006).

    CAS  PubMed  Google Scholar 

  42. Uemura, M. & Takeichi, M. αN-catenin deficiency causes defects in axon migration and nuclear organization in restricted regions of the mouse brain. Dev. Dyn. 235, 2559–2566 (2006).

    CAS  PubMed  Google Scholar 

  43. Iwai, Y. et al. DN-cadherin is required for spatial arrangement of nerve terminals and ultrastructural organization of synapses. Mol. Cell. Neurosci. 19, 375–388 (2002).

    CAS  PubMed  Google Scholar 

  44. Clandinin, T. R. & Zipursky, S. L. Making connections in the fly visual system. Neuron 35, 827–841 (2002).

    CAS  PubMed  Google Scholar 

  45. Meinertzhagen, I. A. & O'Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).

    CAS  PubMed  Google Scholar 

  46. Lee, C. H., Herman, T., Clandinin, T. R., Lee, R. & Zipursky, S. L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30, 437–450 (2001).

    CAS  PubMed  Google Scholar 

  47. Prakash, S., Caldwell, J. C., Eberl, D. F. & Clandinin, T. R. Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nature Neurosci. 8, 443–450 (2005). Describes precise analyses of the role of D N-cadherin during the targeting processes of R1–R6 axons in the medulla, and demonstrates that both the R axons and their targets require this cadherin to establish synaptic connections.

    CAS  PubMed  Google Scholar 

  48. Ting, C. Y. et al. Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development 132, 953–963 (2005).

    CAS  PubMed  Google Scholar 

  49. Nern, A. et al. An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proc. Natl Acad. Sci. USA 102, 12944–12949 (2005).

    CAS  PubMed  Google Scholar 

  50. Hummel, T. & Zipursky, S. L. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 42, 77–88 (2004). D N-cadherin is shown to be essential for the olfactory receptor neuron innervation of the glomeruli in the antennal lobe.

    CAS  PubMed  Google Scholar 

  51. Zhu, H. & Luo, L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42, 63–75 (2004). Demonstrates that dendritic branches of the second-order projection neurons forming a glomerulus overspread into neighbouring glomeruli in the absence of DN-cadherin.

    CAS  PubMed  Google Scholar 

  52. Dunah, A. W. et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nature Neurosci. 8, 458–467 (2005).

    CAS  PubMed  Google Scholar 

  53. Kypta, R. M., Su, H. & Reichardt, L. F. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J. Cell Biol. 134, 1519–1529 (1996).

    CAS  PubMed  Google Scholar 

  54. Clandinin, T. R. et al. Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron 32, 237–248 (2001).

    CAS  PubMed  Google Scholar 

  55. Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J. E. & Dickson, B. J. Cell-autonomous and-nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 32, 225–235 (2001).

    CAS  PubMed  Google Scholar 

  56. Choe, K. M., Prakash, S., Bright, A. & Clandinin, T. R. Liprin-α is required for photoreceptor target selection in Drosophila. Proc. Natl Acad. Sci. USA 103, 11601–11606 (2006).

    CAS  PubMed  Google Scholar 

  57. Hofmeyer, K., Maurel-Zaffran, C., Sink, H. & Treisman, J. E. Liprin-α has LAR-independent functions in R7 photoreceptor axon targeting. Proc. Natl Acad. Sci. USA 103, 11595–11600 (2006).

    CAS  PubMed  Google Scholar 

  58. Fukata, M. & Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nature Rev. Mol. Cell Biol. 2, 887–897 (2001).

    CAS  Google Scholar 

  59. Tachibana, K. et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol. 150, 1161–1176 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fabre, S. et al. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C′-C′-D β-strands of the nectin1 V domain. J. Biol. Chem. 277, 27006–27013 (2002).

    CAS  PubMed  Google Scholar 

  61. Togashi, H. et al. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J. Cell Biol. 174, 141–151 (2006). Shows that the trans -interactions between nectin 1 and nectin 3 at axon–dendritic contact sites are essential for recruiting cadherins to these sites, which in turn stabilize the synaptic junctions.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    CAS  PubMed  Google Scholar 

  63. Saburi, S. & McNeill, H. Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Curr. Opin. Cell Biol. 17, 482–488 (2005).

    CAS  PubMed  Google Scholar 

  64. Formstone, C. J. & Mason, I. Expression of the Celsr/flamingo homologue, c-fmi 1, in the early avian embryo indicates a conserved role in neural tube closure and additional roles in asymmetry and somitogenesis. Dev. Dyn. 232, 408–413 (2005).

    CAS  PubMed  Google Scholar 

  65. Formstone, C. J. & Little, P. F. The flamingo-related mouse Celsr family (Celsr1–3) genes exhibit distinct patterns of expression during embryonic development. Mech. Dev. 109, 91–94 (2001).

    CAS  PubMed  Google Scholar 

  66. Hadjantonakis, A. K., Formstone, C. J. & Little, P. F. mCelsr1 is an evolutionarily conserved seven-pass transmembrane receptor and is expressed during mouse embryonic development. Mech. Dev. 78, 91–95 (1998).

    CAS  PubMed  Google Scholar 

  67. Curtin, J. A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13, 1129–1133 (2003).

    CAS  PubMed  Google Scholar 

  68. Gao, F. B., Kohwi, M., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28, 91–101 (2000).

    CAS  PubMed  Google Scholar 

  69. Sweeney, N. T., Li, W. & Gao, F. B. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis. Dev. Biol. 247, 76–88 (2002).

    CAS  PubMed  Google Scholar 

  70. Lee, R. C. et al. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nature Neurosci. 6, 557–563 (2003). Provides evidence that Flamingo is essential for R1–R6 axons to select particular neurons in the lamina during their connection processes.

    CAS  PubMed  Google Scholar 

  71. Senti, K. A. et al. Flamingo regulates R8 axon–axon and axon–target interactions in the Drosophila visual system. Curr. Biol. 13, 828–832 (2003). Shows that, in Flamingo mutants, R8 axons cannot reach the correct positions in the medulla, and also that their axons cannot maintain a correct space between themselves during migration.

    CAS  PubMed  Google Scholar 

  72. Shima, Y. et al. Differential expression of the seven-pass transmembrane cadherin genes Celsr1–3 and distribution of the Celsr2 protein during mouse development. Dev. Dyn. 223, 321–332 (2002).

    CAS  PubMed  Google Scholar 

  73. Tissir, F., De-Backer, O., Goffinet, A. M. & Lambert de Rouvroit, C. Developmental expression profiles of Celsr (Flamingo) genes in the mouse. Mech. Dev. 112, 157–160 (2002).

    CAS  PubMed  Google Scholar 

  74. Shima, Y., Kengaku, M., Hirano, T., Takeichi, M. & Uemura, T. Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev. Cell 7, 205–216 (2004). The first paper to have examined the role of CELSR2 in neural tissues, showing that dendritic branches of Purkinje cells retract when the expression of this protein is knocked down by RNAi methods.

    CAS  PubMed  Google Scholar 

  75. Tissir, F., Bar, I., Jossin, Y., De Backer, O. & Goffinet, A. M. Protocadherin Celsr3 is crucial in axonal tract development. Nature Neurosci. 8, 451–457 (2005). Demonstrated for the first time that genetic deletion of the Celsr3 gene results in serious defects in various axon tracts in the brain.

    CAS  PubMed  Google Scholar 

  76. Tasic, B. et al. Promoter choice determines splice site selection in protocadherin α and γ pre-mRNA splicing. Mol. Cell 10, 21–33 (2002).

    CAS  PubMed  Google Scholar 

  77. Wang, X., Su, H. & Bradley, A. Molecular mechanisms governing Pcdh-γ gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev. 16, 1890–1905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Esumi, S. et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons. Nature Genet. 37, 171–176 (2005).

    CAS  PubMed  Google Scholar 

  79. Vanhalst, K., Kools, P., Staes, K., van Roy, F. & Redies, C. δ-Protocadherins: a gene family expressed differentially in the mouse brain. Cell. Mol. Life Sci. 62, 1247–1259 (2005).

    CAS  PubMed  Google Scholar 

  80. El-Amraoui, A. & Petit, C. Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J. Cell Sci. 118, 4593–4603 (2005).

    CAS  PubMed  Google Scholar 

  81. Frank, M. et al. Differential expression of individual γ-protocadherins during mouse brain development. Mol. Cell. Neurosci. 29, 603–616 (2005).

    CAS  PubMed  Google Scholar 

  82. Phillips, G. R. et al. γ-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J. Neurosci. 23, 5096–5104 (2003).

    CAS  PubMed  Google Scholar 

  83. Wang, X. et al. γ protocadherins are required for survival of spinal interneurons. Neuron 36, 843–854 (2002). The first paper on Pcdh-γ knockout, which shows that this cadherin is required for neuronal survival in the spinal cord.

    CAS  PubMed  Google Scholar 

  84. Weiner, J. A., Wang, X., Tapia, J. C. & Sanes, J. R. γ protocadherins are required for synaptic development in the spinal cord. Proc. Natl Acad. Sci. USA 102, 8–14 (2005).

    CAS  PubMed  Google Scholar 

  85. Haas, I. G., Frank, M., Veron, N. & Kemler, R. Presenilin-dependent processing and nuclear function of γ-protocadherins. J. Biol. Chem. 280, 9313–9319 (2005).

    CAS  PubMed  Google Scholar 

  86. Hambsch, B., Grinevich, V., Seeburg, P. H. & Schwarz, M. K. γ-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression. J. Biol. Chem. 280, 15888–15897 (2005).

    CAS  PubMed  Google Scholar 

  87. Reiss, K. et al. Regulated ADAM10-dependent ectodomain shedding of γ-protocadherin C3 modulates cell–cell adhesion. J. Biol. Chem. 281, 21735–21744 (2006).

    CAS  PubMed  Google Scholar 

  88. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).

    CAS  PubMed  Google Scholar 

  89. Blank, M., Triana-Baltzer, G. B., Richards, C. S. & Berg, D. K. α-protocadherins are presynaptic and axonal in nicotinic pathways. Mol. Cell. Neurosci. 26, 530–543 (2004).

    CAS  PubMed  Google Scholar 

  90. Tanoue, T. & Takeichi, M. New insights into Fat cadherins. J. Cell Sci. 118, 2347–2353 (2005).

    CAS  PubMed  Google Scholar 

  91. Down, M. et al. Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr. Patterns 5, 483–490 (2005).

    CAS  PubMed  Google Scholar 

  92. Rock, R., Schrauth, S. & Gessler, M. Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev. Dyn. 234, 747–755 (2005).

    CAS  PubMed  Google Scholar 

  93. Mitsui, K., Nakajima, D., Ohara, O. & Nakayama, M. Mammalian fat3: a large protein that contains multiple cadherin and EGF-like motifs. Biochem. Biophys. Res. Commun. 290, 1260–1266 (2002).

    CAS  PubMed  Google Scholar 

  94. Nakayama, M., Nakajima, D., Yoshimura, R., Endo, Y. & Ohara, O. MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells. Mol. Cell. Neurosci. 20, 563–578 (2002).

    CAS  PubMed  Google Scholar 

  95. Tanoue, T. & Takeichi, M. Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact. J. Cell Biol. 165, 517–528 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ciani, L., Patel, A., Allen, N. D. & ffrench-Constant, C. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol. Cell Biol. 23, 3575–3582 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chu, Y. S. et al. Prototypical type I E-cadherin and type II cadherin-7 mediate very distinct adhesiveness through their extracellular domains. J. Biol. Chem. 281, 2901–2910 (2006).

    CAS  PubMed  Google Scholar 

  98. Morante, J. & Desplan, C. Photoreceptor axons play hide and seek. Nature Neurosci. 8, 401–402 (2005).

    CAS  PubMed  Google Scholar 

  99. Mandai, K. et al. Afadin: a novel actin-filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J. Cell Biol. 139, 517–528 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank T. R. Clandinin, C. Desplan, H. Togashi and T. Usui for providing the original drawings for schematic illustrations; A. Goffinet, Y. Iwai, I. Masai, K. Tanabe and T. Uemura for providing photographs; S. Hirano for data analysis; and S. Ito for her help in preparing figures. Work in the laboratory was supported by the program Grants-in-Aid for Specially Promoted Research of the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Dendritic field

The area covered by dendritic arborizations of a neuron.

Adherens junction

Protein complexes that occur at cell–cell junctions. They are composed of the cadherin–catenin complexes, and characterized by accumulation of actin filaments at their cytoplasmic side.

Neuroepithelial stage

The earliest stage in the developing CNS. The neuroepithelium is a layer of cells with epithelium-like morphologies, which give rise to a diverse array of neural cells during development.

Ommatidium

A unit of the compound eye of insects. Each ommatidium contains a cluster of photoreceptor cells and functionally provides the brain with one picture element.

Lamina

Neuropil structure that makes up part of the optic lobe of insects. Out of eight retinal axons, the R1–R6 axons innervate L1–L5 neurons in the lamina. The lamina L1–L5 neurons relay R1–R6 input to the medulla.

Medulla

Neuropil structure that makes up part of the optic lobe of insects. Out of eight retinal axons the R7 and R8 axons innervate the medulla, which also receives input from the lamina L1–L5 neurons.

Fascicle

A slender bundle of nerve fibres.

Defasciculation

The disentanglement of individual axon fibres from a bundle of fibres, called a fascicle or tract, which allows them to migrate in separate directions.

Glomerulus

In the nervous system, an anatomically discrete module that receives input from other neurons.

Planar cell polarity

(PCP). The property of epithelial cells polarizing along the plane of the epithelium.

Hemisegment

The animal body is segmented along the rostrocaudal axis, as seen in the insects. A hemisegment represents half of a symmetrical segment from either side of the body.

Stereocilia

Mechanosensing organelles of hair cells. As hearing sensors, stereocilia are lined up in the Organ of Corti within the cochlea of the inner ear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8, 11–20 (2007). https://doi.org/10.1038/nrn2043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing