Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic mechanisms in memory formation

Key Points

  • Recently, cellular, molecular and behavioural approaches have led to several exciting developments in the area of epigenetics that specifically concern neurobiological systems. In this review, the topic of epigenetics is introduced. The idea that the conservation of epigenetic mechanisms for information storage represents a unifying model in biology is then discussed, with epigenetic mechanisms being used for cellular memory at different levels that range from cellular differentiation to development to behavioural memory.

  • Epigenetics is defined as a mechanism for the stable maintenance of gene expression that involves physically 'marking' DNA or its associated proteins, which allows genotypically identical cells to be phenotypically distinct. Epigenetic marking of the genome can take several forms. Methylation of DNA and acetylation, phosphorylation, ubiquitylation and methylation of histones are discussed as potential mechanisms for the epigenetic tagging of the genome.

  • Neural development and differentiation involve the actions of the RE1-silencing transcription factor (REST), which recruits transcriptional co-factors and ultimately modulates the acetylation of histones.

  • The master circadian oscillator in the suprachiasmatic nucleus uses epigenetic mechanisms, including histone acetylation and phosphorylation, to generate circadian patterns of gene expression and to modulate gene expression in response to phase-resetting stimuli.

  • Seizures are known to lead to several lasting changes in gene expression. These changes seem to be due, at least in part, to changes in histone acetylation.

  • The formation of long-term memories requires a highly coordinated pattern of gene expression. Several recent studies indicate that epigenetic mechanisms are involved in long-term memory formation. Exposure to learning paradigms that result in the formation of long-term memories lead to changes in histone acetylation. Interference with the function of the CREB-binding protein (CBP), which is a histone acetyltransferase, impairs long-term memory formation. Treatment of animals with histone deacetylase inhibitors, which increase levels of histone acetylation, enhances the formation of long-term memories.

  • Synaptic plasticity is a candidate cellular mechanism that is implicated in long-term memory formation. Induction of synaptic plasticity leads to changes in histone acetylation that are similar to those seen in long-term memory formation. Disruption of normal CBP function leads to deficits in long-term potentiation. Moreover, treatment with histone deacetylase inhibitors ameliorates deficits in long-term potentiation that are seen in animal models of CBP dysfunction, and enhances long-term potentiation in normal animals.

  • Several diseases of human cognition are reviewed, in which one of the candidate molecular mechanisms involves dysfunction in epigenetic tagging of the genome. Diseases highlighted are Rubinstein–Taybi syndrome, Rett syndrome, Fragile X mental retardation, Alzheimer's disease and schizophrenia.

Abstract

Discoveries concerning the molecular mechanisms of cell differentiation and development have dictated the definition of a new sub-discipline of genetics known as epigenetics. Epigenetics refers to a set of self-perpetuating, post-translational modifications of DNA and nuclear proteins that produce lasting alterations in chromatin structure as a direct consequence, and lasting alterations in patterns of gene expression as an indirect consequence. The area of epigenetics is a burgeoning subfield of genetics in which there is considerable enthusiasm driving new discoveries. Neurobiologists have only recently begun to investigate the possible roles of epigenetic mechanisms in behaviour, physiology and neuropathology. Strikingly, the relevant data from the few extant neurobiology-related studies have already indicated a theme — epigenetic mechanisms probably have an important role in synaptic plasticity and memory formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Memory at the cellular level.
Figure 2: The nucleosome and the histone code.
Figure 3: Epigenetics in the adult nervous system.
Figure 4: Model for epigenetics in contextual fear memory — a histone code for memory formation?

Similar content being viewed by others

References

  1. Pray, L. Epigenetics: genome, meet your environment. Scientist 18, 14–20 (2004). This is an excellent introduction to the field of epigenetics.

    Google Scholar 

  2. Si, K. et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. Cell. 115, 893–904 (2003). This study shows that the Aplysia form of the CPEB protein is necessary for the induction of long-term forms of synaptic plasticity.

    Article  CAS  PubMed  Google Scholar 

  3. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003). In this study, the authors provide evidence to indicate that the CPEB protein in Aplysia contains a prion-like domain that might act in an epigenetic-like manner to mark specific synapses for facilitation.

    Article  CAS  PubMed  Google Scholar 

  4. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rakyan, V. K., Preis, J., Morgan, H. D. & Whitelaw, E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem. J. 356, 1–10 (2001). This is an excellent recent review of epigenetic mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hatzis, P. & Talianidis, I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4α gene expression. Mol. Cell Biol. 21, 7320–7330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crowe, A. J. et al. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the α-fetoprotein gene. J. Biol. Chem. 274, 25113–25120 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Parrizas, M. et al. Hepatic nuclear factor 1-α directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol. Cell. Biol. 21, 3234–3243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ehrenhofer-Murray, A. E. Chromatin dynamics at DNA replication, transcription and repair. Eur. J. Biochem. 271, 2335–2349 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Henderson, I. R., Shindo, C. & Dean, C. The need for winter in the switch to flowering. Annu. Rev. Genet. 37, 371–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Smale, S. T. The establishment and maintenance of lymphocyte identity through gene silencing. Nature Immunol. 4, 607–615 (2003).

    Article  CAS  Google Scholar 

  12. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Tanner, K. G. et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional co-activator. J. Biol. Chem. 274, 18157–18160 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Tanner, K. G., Langer, M. R., Kim, Y. & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048–22055 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Lau, O. D. et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J. Biol. Chem. 275, 21953–21959 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tanner, K. G., Langer, M. R. & Denu, J. M. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 39, 11961–11969 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Murray, K. The occurrence of ε-N-methyl lysine in histones. Biochemistry 127, 10–15 (1964).

    Article  Google Scholar 

  19. Goldknopf, I. L. et al. Isolation and characterization of protein A24, a 'histone-like' non-histone chromosomal protein. J. Biol. Chem. 250, 7182–7187 (1975).

    CAS  PubMed  Google Scholar 

  20. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Nickel, B. E. & Davie, J. R. Structure of polyubiquitinated histone H2A. Biochemistry 28, 964–968 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. West, M. H. & Bonner, W. M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 8, 4671–4680 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, H. Y., Sun, J. M., Zhang, Y., Davie, J. R. & Meistrich, M. L. Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem. 273, 13165–13169 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Pham, A. D. & Sauer, F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289, 2357–2360 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bradbury, E. M., Inglis, R. J., Matthews, H. R. & Sarner, N. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur. J. Biochem. 33, 131–139 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Gurley, L. R., Walters, R. A. & Tobey, R. A. Cell cycle-specific changes in histone phosphorylation associated with cell proliferation and chromosome condensation. J. Cell Biol. 60, 356–364 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Di Agostino, S., Rossi, P., Geremia, R. & Sette, C. The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development 129, 1715–1727 (2002).

    CAS  PubMed  Google Scholar 

  32. Goto, H., Yasui, Y., Nigg, E. A. & Inagaki, M. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7, 11–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ajiro, K., Yoda, K., Utsumi, K. & Nishikawa, Y. Alteration of cell cycle-dependent histone phosphorylations by okadaic acid. Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells. J. Biol. Chem. 271, 13197–13201 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Nowak, S. J., Pai, C. Y. & Corces, V. G. Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol. Cell. Biol. 23, 6129–6138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Brown, D. T. Histone H1 and the dynamic regulation of chromatin function. Biochem. Cell Biol. 81, 221–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, L. et al. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30, 11018–11025 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Bird, A. P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 118, 49–60 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. Cedar, H., Solage, A., Glaser, G. & Razin, A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 6, 2125–2132 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cooper, D. N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83, 181–188 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Maier, H., Colbert, J., Fitzsimmons, D., Clark, D. R. & Hagman, J. Activation of the early B-cell-specific mb-1 (Ig-α) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol. Cell. Biol. 23, 1946–1960 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown, C. J. & Chow, J. C. Beyond sense: the role of antisense RNA in controlling Xist expression. Semin. Cell Dev. Biol. 14, 341–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Chow, J. C. & Brown, C. J. Forming facultative heterochromatin: silencing of an X chromosome in mammalian females. Cell. Mol. Life Sci. 60, 2586–2603 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Sauman, I. & Reppert, S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of Period protein regulation. Neuron 17, 889–900 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Crosthwaite, S. K. Circadian clocks and natural antisense RNA. FEBS Lett. 567, 49–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Maue, R. A., Kraner, S. D., Goodman, R. H. & Mandel, G. Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223–231 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Li, L., Suzuki, T., Mori, N. & Greengard, P. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl Acad. Sci. USA 90, 1460–1464 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Paquette, A. J., Perez, S. E. & Anderson, D. J. Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo. Proc. Natl Acad. Sci. USA 97, 12318–12323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andres, M. E. et al. CoREST: a functional co-repressor required for regulation of neural-specific gene expression. Proc. Natl Acad. Sci. USA 96, 9873–9878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, Y., Myers, S. J. & Dingledine, R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neurosci. 2, 867–872 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Naruse, Y., Aoki, T., Kojima, T. & Mori, N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc. Natl Acad. Sci. USA 96, 13691–13696 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grimes, J. A. et al. The co-repressor mSin3A is a functional component of the REST–CoREST repressor complex. J. Biol. Chem. 275, 9461–9467 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Roopra, A. et al. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3–histone deacetylase complex. Mol. Cell. Biol. 20, 2147–2157 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ballas, N. et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Battaglioli, E. et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem. 277, 41038–41045 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Lunyak, V. V. et al. Co-repressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298, 1747–1752 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Klein, D. C., Moore, R. Y. & Reppert, S. M. Suprachiasmatic Nucleus: The Mind's Clock (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  74. Zylka, M. J., Shearman, L. P., Weaver, D. R. & Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Naruse, Y. et al. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24, 6278–6287 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Crosio, C., Cermakian, N., Allis, C. D. & Sassone-Corsi, P. Light induces chromatin modification in cells of the mammalian circadian clock. Nature Neurosci. 3, 1241–1247 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Morgan, J. I., Cohen, D. R., Hempstead, J. L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237, 192–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Mugnaini, E., Berrebi, A. S., Morgan, J. I. & Curran, T. Fos-like immunoreactivity induced by seizure in mice is specifically associated with euchromatin in neurons. Eur. J. Neurosci. 1, 46–52 (1989).

    Article  PubMed  Google Scholar 

  80. Kokaia, M. et al. Suppressed epileptogenesis in BDNF mutant mice. Exp. Neurol. 133, 215–224 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Binder, D. K., Routbort, M. J., Ryan, T. E., Yancopoulos, G. D. & McNamara, J. O. Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J. Neurosci. 19, 1424–1436 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grooms, S. Y., Opitz, T., Bennett, M. V. & Zukin, R. S. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc. Natl Acad. Sci. USA 97, 3631–3636 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sanchez, R. M. et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J. Neurosci. 21, 8154–8163 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Isackson, P. J., Huntsman, M. M., Murray, K. D. & Gall, C. M. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937–948 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Ernfors, P., Bengzon, J., Kokaia, Z., Persson, H. & Lindvall, O. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7, 165–176 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Timmusk, T. et al. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10, 475–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Nibuya, M., Morinobu, S. & Duman, R. S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang, Y., Doherty, J. J. & Dingledine, R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J. Neurosci. 22, 8422–8428 (2002). Using the pilocarpine model for induction of status epilepticus, the authors show that acetylation of histone H4 is reduced at the promoter for GluR2, but increased at the promoter for the BDNF gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsankova, N. M., Kumar, A. & Nestler, E. J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 24, 5603–5610 (2004). This paper comprehensively screens the promoter regions of many genes for several types of modification to histones in the context of electroconvulsive shock.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barondes, S. H. & Jarvik, M. E. The influence of actinomycin-D on brain RNA synthesis and on memory. J. Neurochem. 11, 187–195 (1964).

    Article  CAS  PubMed  Google Scholar 

  91. Cohen, H. D. & Barondes, S. H. Further studies of learning and memory after intracerebral actinomycin-D. J. Neurochem. 13, 207–211 (1966).

    Article  CAS  PubMed  Google Scholar 

  92. Flood, J. F., Bennett, E. L., Orme, E. & Rosenzweig, M. R. Relation of memory formation to controlled amounts of brain protein synthesis. Physiol. Behav. 15, 97–102 (1975).

    Article  CAS  PubMed  Google Scholar 

  93. Flood, J. F., Bennett, E. L., Orme, A. E. & Rosenzweig, M. R. Effects of protein synthesis inhibition on memory for active avoidance training. Physiol. Behav. 14, 177–184 (1975).

    Article  CAS  PubMed  Google Scholar 

  94. Squire, L. R., Emanuel, C. A., Davis, H. P. & Deutsch, J. A. Inhibitors of cerebral protein synthesis: dissociation of aversive and amnesic effects. Behav. Biol. 14, 335–341 (1975).

    Article  PubMed  Google Scholar 

  95. Roberson, E. D. & Sweatt, J. D. A biochemical blueprint for long-term memory. Learn. Mem. 6, 381–388 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Selcher, J. C., Weeber, E. J., Varga, A. W., Sweatt, J. D. & Swank, M. Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 8, 122–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Levenson, J. M. et al. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-Rel. J. Neurosci. 24, 3933–3943 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559 (2004). This study shows that acetylation of H3 is increased by long-term memory formation and activation of the signalling pathways involved in memory formation, and shows that induction of LTP and formation of long-term memories can be enhanced by administration of HDAC inhibitors.

    Article  CAS  PubMed  Google Scholar 

  99. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Fanselow, M. S., Kim, J. J., Yipp, J. & De Oca, B. Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues. Behav. Neurosci. 108, 235–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M. & Sweatt, J. D. The MAPK cascade is required for mammalian associative learning. Nature Neurosci. 1, 602–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neurosci. 3, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Kalkhoven, E. CBP and p300: HATs for different occasions. Biochem. Pharmacol. 68, 1145–1155 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Bourtchouladze, R. et al. A mouse model of Rubinstein–Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl Acad. Sci. USA 100, 10518–10522 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korzus, E., Rosenfeld, M. G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004). Using an inducible, dominant-negative form of CBP, the authors show that derangement of CBP function leads to deficits in long-term memory formation and synaptic plasticity, and that these deficits can be rescued through the use of HDAC inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alarcon, J. M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron 42, 947–959 (2004). Modelling Rubinstein–Taybi syndrome through CBP haploinsufficiency, this study shows that loss of CBP function leads to deficits in memory formation, and that these deficits can be ameliorated through treatment with an HDAC inhibitor.

    Article  CAS  PubMed  Google Scholar 

  109. Yeh, S. H., Lin, C. H. & Gean, P. W. Acetylation of nuclear factor-κB in rat amygdala improves long-term but not short-term retention of fear memory. Mol. Pharmacol. 65, 1286–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Malenka, R. C. & Bear, M. F. LTP and LTD; an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Klann, E., Antion, M. D., Banko, J. L. & Hou, L. Synaptic plasticity and translation initiation. Learn. Mem. 11, 365–372 (2004).

    Article  PubMed  Google Scholar 

  112. Pittenger, C. & Kandel, E. R. In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos. Trans. R. Soc. Lond. B 358, 757–763 (2003).

    Article  Google Scholar 

  113. Guan, Z. et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111, 483–493 (2002). This study shows that in Aplysia , treatments that induce synaptic facilitation lead to increases in histone acetylation and that treatments that induce synaptic depression lead to decreases in histone acetylation.

    Article  CAS  PubMed  Google Scholar 

  114. Harris, E. W., Ganong, A. H. & Cotman, C. W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323, 132–137 (1984).

    Article  CAS  PubMed  Google Scholar 

  115. Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  116. English, J. D. & Sweatt, J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103–19106 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Crosio, C., Heitz, E., Allis, C. D., Borrelli, E. & Sassone-Corsi, P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J. Cell Sci. 116, 4905–4914 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Blough, R. I. et al. Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein–Taybi syndrome. Am. J. Med. Genet. 90, 29–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Ellaway, C. & Christodoulou, J. Rett syndrome: clinical characteristics and recent genetic advances. Disabil. Rehabil. 23, 98–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Sirianni, N., Naidu, S., Pereira, J., Pillotto, R. F. & Hoffman, E. P. Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28. Am. J. Hum. Genet. 63, 1552–1558 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Collins, A. L. et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Turner, G., Webb, T., Wake, S. & Robinson, H. Prevalence of fragile X syndrome. Am. J. Med. Genet. 64, 196–197 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Ashley, C. T. et al. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG-repeat. Nature Genet. 4, 244–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Gecz, J., Gedeon, A. K., Sutherland, G. R. & Mulley, J. C. Identification of the gene FMR2, associated with FRAXE mental retardation. Nature Genet. 13, 105–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Gu, Y., Shen, Y., Gibbs, R. A. & Nelson, D. L. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nature Genet. 13, 109–113 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Kuo, Y. M. et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Selkoe, D. J. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835–841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kimberly, W. T., Zheng, J. B., Guenette, S. Y. & Selkoe, D. J. The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a Notch-like manner. J. Biol. Chem. 276, 40288–40292 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Cao, X. & Sudhof, T. C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Von Rotz, R. C. et al. The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J. Cell Sci. 117, 4435–4448 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Costa, E. et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol. Intervent. 2, 47–57 (2002).

    Article  CAS  Google Scholar 

  135. Chen, Y., Sharma, R. P., Costa, R. H., Costa, E. & Grayson, D. R. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 30, 2930–2939 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004). This study is one of the first to show that events in early postnatal development result in epigenetic tagging of the genome and can lead to long-term changes in behaviour.

    Article  CAS  PubMed  Google Scholar 

  137. Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in the authors' laboratories is supported by the National Institute of Mental Health, National Institute of Child Health and Human Development, National Institute of Neurological Disorders and Stroke, and the American Health Assistance Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Sweatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

APP

BDNF

CTCF

ETS1

FE65

FMR1

FMR2

GluR2

HDAC1

HDAC2

IPL1

Kaiso

MAPK1

MBD1

MBD2

MBD4

MECP2

MSK1

Per1

Per2

reelin

REST

RSK2

SIN3A

TIP60

TSIX

XIST

OMIM

Alzheimer's disease

Rett syndrome

Rubinstein–Taybi syndrome

schizophrenia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levenson, J., Sweatt, J. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6, 108–118 (2005). https://doi.org/10.1038/nrn1604

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1604

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing