Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimal feedback control and the neural basis of volitional motor control

Key Points

  • The motor system can be considered at three levels: motor behaviour, limb mechanics and neural control. Although our understanding at each level continues to grow, linking these levels into a cohesive framework is an important challenge for neuroscientists.

  • The peripheral motor system is a complex filter that converts patterns of muscle activity into movements. This conversion depends on the properties of muscle, multi-joint mechanics with uncoupled joint motion and muscular torque, as well as environmental forces acting on the limbs.

  • Despite these complexities, body movements are smooth and graceful. For example, hand trajectories during reaching movements are fairly straight, and hand velocity follows a smooth, bell-shaped profile. The motor system compensates for the complexities of limb mechanics, and also can adapt to perceptual or mechanical perturbations. There is considerable noise in the motor system, which is reflected in trial-to-trial variability, but task-relevant features are less variable.

  • Motor control involves the spinal cord, brainstem and cerebral cortex. Neurophysiological studies of motor control often involve recording the activity of neurons in different brain regions and relating such activity to aspects of sensorimotor function.

  • Such recordings indicate that neural activity in primary motor cortex (M1) correlates with hand direction, speed and distance of movement. However, theoretical studies have shown that such correlations can arise even if neurons code other details such as muscle activity or joint motion. There is also evidence that M1 behaves like or forms part of an inverse internal model that converts spatial goals or trajectories into detailed motor patterns.

  • Optimal feedback control might provide a link between the different levels of motor control. An optimal feedback controller uses an optimal estimate of the state of the system, generated through sensory feedback and efferent copy, and uses this feedback to adjust its output towards a specific goal. 'Errors' are corrected only if they adversely affect motor performance.

  • This control theory is consistent with a number of features of motor behaviour and of neural processing in M1. For example, the activity of M1 neurons varies depending on the behavioural context, and M1 receives a rich mix of sensory inputs.

  • Although the mathematics to compute an optimal feedback controller are quite complex, such controllers provide an important bridge to link limb mechanics, motor behaviour and the neural basis of motor control.As a theory, optimal feedback control generates a number of neurophysiological questions on how such a controller is created by the highly distributed circuitry involved in sensorimotor function.

Abstract

Skilled motor behaviour, from the graceful leap of a ballerina to a precise pitch by a baseball player, appears effortless but reflects an intimate interaction between the complex mechanical properties of the body and control by a highly distributed circuit in the CNS. An important challenge for understanding motor function is to connect these three levels of the motor system — motor behaviour, limb mechanics and neural control. Optimal feedback control theory might provide the important link across these levels of the motor system and help to unravel how the primary motor cortex and other regions of the brain plan and control movement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Features of motor behaviour.
Figure 2: Neural activity in primary motor cortex (M1) during reaching.
Figure 3: Response of a primary motor cortex (M1) neuron to mechanical perturbations in different contexts.
Figure 4: Effects of dentate cooling on the discharge pattern of a primary motor cortex (M1) neuron.

Similar content being viewed by others

References

  1. Scott, S. H. Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm? Can. J. Physiol. Pharmacol. 78, 923–933 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938).

    Article  Google Scholar 

  3. Gordon, A. M., Huxley, A. F. & Julian, F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.) 184, 170–192 (1966).

    Article  CAS  Google Scholar 

  4. Burke, R. E., Levine, D. N., Tsairis, P. & Zajac, F. E. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. (Lond.) 234, 723–748 (1973).

    Article  CAS  Google Scholar 

  5. Scott, S. H., Brown, I. E. & Loeb, G. E. Mechanics of feline soleus: I. effect of fascicle length and velocity on force output. J. Muscle Res. Cell Motil. 17, 207–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, E. J., Brown, I. E. & Loeb, G. E. Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J. Neurosci. Methods 101, 117–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989).

    CAS  PubMed  Google Scholar 

  8. Otten, E. in Exercise and Sport Sciences Reviews (ed. Pandolf, K. B.) 89–137 (Williams & Wilkins, Baltimore, 1989).

    Google Scholar 

  9. Cheng, E. J. & Scott, S. H. Morphometry of Macaca mulatta forelimb. I. Shoulder and elbow muscles and segment inertial parameters. J. Morphol. 245, 206–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Singh, K., Melis, E. H., Richmond, F. J. & Scott, S. H. Morphometry of Macaca mulatta forelimb. II. Fiber-type composition in shoulder and elbow muscles. J. Morphol. 251, 323–332 (2002).

    Article  PubMed  Google Scholar 

  11. Graham, K. M. & Scott, S. H. Morphometry of Macaca mulatta forelimb. III. Moment arm of shoulder and elbow muscles. J. Morphol. 255, 301–314 (2003).

    Article  PubMed  Google Scholar 

  12. Hollerbach, J. M. & Flash, T. Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44, 67–77 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Zajac, F. E. & Gordon, M. E. in Exercise and Sport Sciences Reviews (ed. Pandolf, K. B.) 187–230 (Williams & Wilkins, Baltimore, 1989).

    Google Scholar 

  14. Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Graham, K. M. et al. Kinematics and kinetics of multi-joint reaching in non-human primates. J. Neurophysiol. 89, 2667–2677 (2003).

    Article  PubMed  Google Scholar 

  16. Schieber, M. H., Gardinier, J. & Liu, J. Tension distribution to the five digits of the hand by neuromuscular compartments in the macaque flexor digitorum profundus. J. Neurosci. 21, 2150–2158 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Valero-Cuevas, F. J., Johanson, M. E. & Towles, J. D. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36, 1019–1030 (2003).

    Article  PubMed  Google Scholar 

  18. Munhall, K. G. in Dynamic Models of Motor Planning (ed. Culicover, P.) 192–198 (Nature Publishing Group, London, 2002).

    Google Scholar 

  19. Morasso, P. Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Flash, T. & Hogan, N. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Krylow, A. M. & Rymer, W. Z. Role of intrinsic muscle properties in producing smooth movements. IEEE Trans. Biomed. Eng. 44, 165–176 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Won, J. & Hogan, N. Stability properties of human reaching movements. Exp. Brain Res. 107, 125–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Lackner, J. R. & DiZio, P. Rapid adaptation to coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Shadmehr, R. & Mussa-Ivaldi, F. A. Rapid adaptation to coriolis force perturbations of arm trajectory. J. Neurosci. 14, 3208–3224 (1994). References 23 and 24 are classic studies that illustrate how subjects modify motor commands to compensate for mechanical loads applied to the limb during reaching.

    Article  CAS  PubMed  Google Scholar 

  25. Flanagan, J. R. & Rao, A. K. Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J. Neurophysiol. 74, 2174–2178 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Sainburg, R. L., Ghez, C. & Kalakanis, D. Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J. Neurophysiol. 81, 1045–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Flanagan, J. R., Vetter, P., Johansson, R. S. & Wolpert, D. M. Prediction precedes control in motor learning. Curr. Biol. 13, 146–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, K. & Scott, S. H. A motor learning strategy reflects neural circuitry for limb control. Nature Neurosci. 6, 399–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Scott, S. H. & Loeb, G. E. The computation of position sense from spindles in mono- and multiarticular muscles. J. Neurosci. 14, 7529–7540 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998). This study illustrates how optimal strategies for minimizing signal-dependent noise lead to bell-shaped velocity profiles and relatively straight hand trajectories.

    Article  CAS  PubMed  Google Scholar 

  31. Vallbo, A. B. Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol. Scand. 90, 319–336 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Winter, D. A. Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum. Mov. Sci. 3, 51–76 (1984).

    Article  Google Scholar 

  33. Lacquaniti, F. & Maioli, C. Coordinate transformations in the control of cat posture. J. Neurophysiol. 72, 1496–1515 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Scholz, J. P. & Schoner, G. The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Scholz, J. P., Schoner, G. & Latash, M. L. Identifying the control structure of multijoint coordination during pistol shooting. Exp. Brain Res. 135, 382–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Sabes, P. N., Jordan, M. I. & Wolpert, D. M. The role of inertial sensitivity in motor planning. J. Neurosci. 18, 5948–5957 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kording, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002). This study illustrates how optimal feedback control can predict many features of volitional motor control, including muscle synergies, motor coordination and variable but accurate movements.

    Article  CAS  PubMed  Google Scholar 

  39. Todorov, E. Cosine tuning minimizes motor errors. Neural Comput. 14, 1233–1260 (2002).

    Article  PubMed  Google Scholar 

  40. van Beers, R. J., Haggard, P. & Wolpert, D. M. The role of execution noise in movement variability. J. Neurophysiol. 91, 1050–1063 (2004).

    Article  PubMed  Google Scholar 

  41. Christel, M. I. & Billard, A. Comparison between macaques' and humans' kinematics of prehension: the role of morphological differences and control mechanisms. Behav. Brain Res. 131, 169–184 (2002).

    Article  PubMed  Google Scholar 

  42. Porter, R. & Lemon, R. N. Cortical Function and Voluntary Movement (Clarendon, Oxford, 1993).

    Google Scholar 

  43. Hepp-Reymond, M. C. Functional organization of motor cortex and its participation in voluntary movements. Comp. Primate Biol. 4, 501–624 (1988).

    Google Scholar 

  44. Wise, S. P., Di Pellegrino, G. & Boussaoud, D. The premotor cortex and nonstandard sensorimotor mapping. Can. J. Physiol. Pharmacol. 74, 469–482 (1996).

    CAS  PubMed  Google Scholar 

  45. Gribble, P. L. & Scott, S. H. Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417, 938–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Iriki, A., Tanaka, M., Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7, 2325–2330 (1996). The first in a series of studies to show how neural activity related to the hand is modified when monkeys are trained to use a rake to retrieve food rewards.

    Article  CAS  PubMed  Google Scholar 

  47. Wise, S. P., Boussaoud, D., Johnson, P. B. & Caminiti, R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci. 20, 25–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F. & Zago, M. Multiple levels of representation of reaching in the parieto-frontal network. Cereb. Cortex 13, 1009–1022 (2003).

    Article  PubMed  Google Scholar 

  49. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kalaska, J. F., Scott, S. H., Cisek, P. & Sergio, L. E. Cortical control of reaching movements. Curr. Opin. Neurobiol. 7, 849–859 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Tanji, J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci. 24, 631–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman, D. S. & Strick, P. L. Effects of a primary motor cortex lesion on step-tracking movements of the wrist. J. Neurophysiol. 73, 891–895 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Dum, R. P. & Strick, P. L. Spinal cord terminations of the medial wall motor areas in macaque monkeys. J. Neurosci. 16, 6513–6525 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Fetz, E. E. & Cheney, P. D. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J. Neurophysiol. 44, 751–772 (1980).

    Article  CAS  PubMed  Google Scholar 

  55. Shinoda, Y., Yokota, J. & Futami, T. Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci. Lett. 23, 7–12 (1981).

    Article  CAS  PubMed  Google Scholar 

  56. Lawrence, D. G., Porter, R. & Redman, S. J. Corticomotoneuronal synapses in the monkey: light microscopic localization upon motoneurons of intrinsic muscles of the hand. J. Comp. Neurol. 232, 499–510 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. McKiernan, B. J., Marcario, J. K., Karrer, J. H. & Cheney, P. D. Correlations between corticomotoneuronal (CM) cell postspike effects and cell-target muscle covariation. J. Neurophysiol. 83, 99–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Heffner, R. & Masterton, B. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol. 12, 161–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  59. Nakajima, K., Maier, M. A., Kirkwood, P. A. & Lemon, R. N. Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J. Neurophysiol. 84, 698–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Gordon, J., Ghilardi, M. F. & Ghez, C. Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp. Brain Res. 99, 97–111 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82, 2676–2692 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Soechting, J. F. & Flanders, M. Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu. Rev. Neurosci. 15, 167–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Kalaska, J. F. & Crammond, D. J. Cerebral cortical mechanisms of reaching movements. Science 255, 1517–1523 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).

    Article  CAS  PubMed  Google Scholar 

  65. Georgopoulos, A. P., Caminiti, R., Kalaska, J. F. & Massey, J. T. Spatial coding of movement: a hypothesis concerning the coding of movement directions by motor cortical populations. Exp. Brain Res. (Suppl.) 7, 327–336 (1983).

    Google Scholar 

  66. Fu, Q. G., Flament, D., Coltz, J. D. & Ebner, T. J. Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J. Neurophysiol. 73, 836–854 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Schwartz, A. B. Motor cortical activity during drawing movements: population representation during sinusoid tracing. J. Neurophysiol. 70, 28–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Kalaska, J. F., Caminiti, R. & Georgopoulos, A. P. Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res. 51, 247–260 (1983).

    Article  CAS  PubMed  Google Scholar 

  69. Cohen, D. A., Prud'homme, M. J. & Kalaska, J. F. Tactile activity in primate primary somatosensory cortex during active arm movements: correlation with receptive field properties. J. Neurophysiol. 71, 161–172 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Caminiti, R., Johnson, P. B., Galli, C., Ferraina, S. & Burnod, Y. Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J. Neurosci. 11, 1182–1197 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Fortier, P. A., Smith, A. M. & Kalaska, J. F. Comparison of cerebellar and motor cortex activity during reaching: directional tuning and response variability. J. Neurophysiol. 69, 1136–1149 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Bosco, G. & Poppele, R. E. Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J. Neurophysiol. 90, 3372–3383 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Jones, K. E., Wessberg, J. & Vallbo, A. B. Directional tuning of human forearm muscle afferents during voluntary wrist movements. J. Physiol. (Lond.) 536, 635–647 (2001).

    Article  CAS  Google Scholar 

  74. Ribot-Ciscar, E., Bergenheim, M., Albert, F. & Roll, J. P. Proprioceptive population coding of limb position in humans. Exp. Brain Res. 149, 512–519 (2003).

    Article  PubMed  Google Scholar 

  75. Kalaska, J. F., Cohen, D. A., Hyde, M. L. & Prud'homme, M. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci. 9, 2080–2102 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Scott, S. H. & Kalaska, J. F. Reaching movements with similar hand paths but different arm orientations: I. Activity of individual cells in motor cortex. J. Neurophysiol. 77, 826–852 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Georgopoulos, A. P. Current issues in directional motor control. Trends Neurosci. 18, 506–510 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Georgopoulos, A. P. On the translation of directional motor cortical commands to activation of muscles via spinal interneuronal systems. Cogn. Brain Res. 3, 151–155 (1996).

    Article  CAS  Google Scholar 

  79. Fukson, O. I., Berkinblit, M. B. & Feldman, A. G. The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209, 1261–1263 (1980).

    Article  CAS  PubMed  Google Scholar 

  80. Kargo, W. J. & Giszter, S. F. Afferent roles in hind limb wipe-reflex trajectories: free-limb kinematics and motor patterns. J. Neurophysiol. 83, 1480–1501 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. D'Avella, A., Saltiel, P. & Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neurosci. 6, 300–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Georgopoulos, A. P. & Ashe, J. One motor cortex, two different views. Nature Neurosci. 3, 963–965 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Moran, D. W. & Schwartz, A. B. One motor cortex, two different views. Nature Neurosci. 3, 963–965 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Todorov, E. Reply to 'One motor cortex, two different views'. Nature Neurosci. 3, 963–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Scott, S. H. Reply to 'One motor cortex, two different views'. Nature Neuroscience 3, 964–965 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Mussa-Ivaldi, F. A. Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neurosci. Lett. 91, 106–111 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nature Neurosci. 3, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Sanger, T. D. Neural population codes. Curr. Opin. Neurobiol. 13, 238–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Scott, S. H., Gribble, P. L., Graham, K. M. & Cabel, D. W. Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature 413, 161–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Scott, S. H. The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates. Curr. Opin. Neurobiol. 13, 671–677 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. Is the cerebellum a smith predictor? J. Motor Behav. 25, 203–216 (1993).

    Article  CAS  Google Scholar 

  92. Scott, S. H. & Norman, K. E. Computational approaches to motor control and their potential role for interpreting motor dysfunction. Curr. Opin. Neurol. 16, 693–698 (2003).

    Article  PubMed  Google Scholar 

  93. Holdefer, R. N. & Miller, L. E. Primary motor cortical neurons encode functional muscle synergies. Exp. Brain Res. 146, 233–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Bennett, K. M. & Lemon, R. N. Corticomotoneuronal contribution to the fractionation of muscle activity during precision grip in the monkey. J. Neurophysiol. 75, 1826–1842 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Sergio, L. E. & Kalaska, J. F. Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J. Neurophysiol. 89, 212–228 (2003).

    Article  PubMed  Google Scholar 

  96. Kakei, S., Hoffman, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Passingham, R. E. Premotor cortex: sensory cues and movement. Behav. Brain Res. 18, 175–185 (1985).

    Article  CAS  PubMed  Google Scholar 

  98. Passingham, R. E., Chen, Y. C. & Thaler, D. in Neural Programming (ed. Ito, M.) 13–24 (Karger, Basel, 1989).

    Google Scholar 

  99. Kurata, K. & Hoffman, D. S. Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. J. Neurophysiol. 71, 1151–1164 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Kurata, K. & Hoshi, E. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. J. Neurophysiol. 81, 1927–1938 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Schmidt, E. M., Porter, R. & McIntosh, J. S. The effects of cooling supplementary motor area and midline cerebral cortex on neuronal responses in area 4 of monkeys. Electroencephalogr. Clin. Neurophysiol. 85, 61–71 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Sparks, D. L. The brainstem control of saccadic eye movements. Nature Rev. Neurosci. 3, 952–964 (2002).

    Article  CAS  Google Scholar 

  103. Scudder, C. A., Kaneko, C. S. & Fuchs, A. F. The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res. 142, 439–462 (2002).

    Article  PubMed  Google Scholar 

  104. Robinson, D. A. in Basic Mechanisms of Ocular Motility and Their Clinical Implications (eds Lennerstand, G. & Bach-y-Rita, P.) 337–374 (Pergamon, Oxford, 1975).

    Google Scholar 

  105. Galiana, H. L. & Guitton, D. Central organization and modeling of eye-head coordination during orienting gaze shifts. Ann. NY Acad. Sci. 656, 452–471 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Houk, J. C. in Cerebral Motor Control in Man: Long Loop Mechanisms. (ed. Desmedt, J. E.) 193–215 (Karger, Basel, 1978).

    Google Scholar 

  107. Loeb, G. E. Hard lessons in motor control from the mammalian spinal cord. Trends Neurosci. 10, 108–113 (1987).

    Article  Google Scholar 

  108. Feldman, A. G. & Levin, M. The origin and use of positional frames of reference in motor control. Behav. Brain Sci. 18, 724–807 (1995).

    Article  Google Scholar 

  109. Hinder, M. R. & Milner, T. E. The case for an internal dynamics model versus equilibrium point control in human movement. J. Physiol. (Lond.) 549, 953–963 (2003).

    Article  CAS  Google Scholar 

  110. Bullock, D., Grossberg, S. & Guenther, F. H. A self-organizing neural model of motor equivalent reaching and tool use by a multi-joint arm. J. Cogn. Neurosci. 5, 408–435 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Cisek, P., Grossberg, S. & Bullock, D. A cortico-spinal model of reaching and proprioception under multiple task constraints. J. Cogn. Neurosci. 10, 425–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Pandy, M. G. & Zajac, F. E. Optimal muscular coordination strategies for jumping. J. Biomech. 24, 1–10 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol. Cybern. 61, 89–101 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Hoff, B. & Arbib, M. A. Models of trajectory formation and temporal interaction of reach and grasp. J. Motor Behav. 25, 175–192 (1993).

    Article  Google Scholar 

  115. Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984).

    Article  CAS  PubMed  Google Scholar 

  116. Dingwell, J. B., Mah, C. D. & Mussa-Ivaldi, F. A. Experimentally confirmed mathematical model for human control of a non-rigid object. J. Neurophysiol. 91, 1158–1170 (2004). This study illustrates how the motor system calculates state variables not only related to body motion, but also related to motion of grasped non-rigid objects.

    Article  PubMed  Google Scholar 

  117. He, J., Levine, W. S. & Loeb, G. E. Feedback gains for correcting small perturbations to standing posture. IEEE Trans. Automatic Control 36, 322–332 (1991). One of the first examples of the use of optimal control methods to identify feedback gains, in this case, for spinal reflexes in the cat hindlimb.

    Article  Google Scholar 

  118. Kuo, A. D. An optimal control model for analyzing human postural balance. IEEE Trans. Biomed. Eng. 42, 87–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. & Smith, J. E. Optimality in human motor performance: ideal control of rapid aimed movements. Psychol. Rev. 95, 340–370 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Jeka, J. J. & Lackner, J. R. Fingertip contact influences human postural control. Exp. Brain Res. 100, 495–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Stengel, R. F. Optimal Control and Estimation (Dover, New York, 1994).

    Google Scholar 

  122. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Gordon, J. & Ghez, C. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp. Brain Res. 67, 253–269 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. Pearson, K. G. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786–791 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Scott, S. H. Population vectors and motor cortex: neural coding or epiphenomenon? Nature Neurosci. 3, 307–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Sanes, J. N. & Schieber, M. H. Orderly somatotopy in primary motor cortex: does it exist? Neuroimage 13, 968–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Park, M. C., Belhaj-Saif, A., Gordon, M. & Cheney, P. D. Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. J. Neurosci. 21, 2784–2792 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Cabel, D. W., Cisek, P. & Scott, S. H. Neural activity in primary motor cortex related to mechanical loads applied to the shoulder and elbow during a postural task. J. Neurophysiol. 86, 2102–2108 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Wong, Y. C., Kwan, H. C., MacKay, W. A. & Murphy, J. T. Spatial organization of precentral cortex in awake primates. I. Somatosensory inputs. J. Neurophysiol. 41, 1107–1119 (1978).

    Article  CAS  PubMed  Google Scholar 

  130. Scott, S. H. Comparison of onset time and magnitude of activity for proximal arm muscles and motor cortical cells prior to reaching movements. J. Neurophysiol. 77, 1016–1022 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Murphy, J. T., Wong, Y. C. & Kwan, H. C. Sequential activation of neurons in primate motor cortex during unrestrained forelimb movement. J. Neurophysiol. 53, 435–445 (1985).

    Article  CAS  PubMed  Google Scholar 

  132. Lemon, R. N. Functional properties of monkey motor cortex neurones receiving afferent input from the hand and fingers. J. Physiol. (Lond.) 311, 497–519 (1981).

    Article  CAS  PubMed Central  Google Scholar 

  133. Strick, P. L. & Preston, J. B. Sorting of somatosensory afferent information in primate motor cortex. Brain Res. 156, 364–368 (1978).

    Article  CAS  PubMed  Google Scholar 

  134. Picard, N. & Smith, A. M. Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J. Neurophysiol. 68, 1867–1881 (1992).

    Article  CAS  PubMed  Google Scholar 

  135. Armstrong, D. M. & Drew, T. Topographical localization in the motor cortex of the cat for somatic afferent responses and evoked movements. J. Physiol. (Lond.) 350, 33–54 (1984).

    Article  CAS  Google Scholar 

  136. Wolpaw, J. R. Correlations between task-related activity and responses to perturbation in primate sensorimotor cortex. J. Neurophysiol. 44, 1122–1138 (1980).

    Article  CAS  PubMed  Google Scholar 

  137. Fromm, C. in Motor Control Mechanisms in Health and Disease (ed. Desmedt, J. E.) 329–345 (Raven, New York, 1983).

    Google Scholar 

  138. Lemon, R. N. & Porter, R. Afferent input to movement-related precentral neurones in conscious monkeys. Proc. R. Soc. Lond. B 194, 313–339 (1976).

    Article  CAS  PubMed  Google Scholar 

  139. Evarts, E. V. & Fromm, C. in Cerebral Motor Control in Man: Long Loop Mechanisms (ed. Desmedt, J. E.) 178–192 (Karger, Basel, 1978).

    Google Scholar 

  140. Matthews, P. B. The human stretch reflex and the motor cortex. Trends Neurosci. 14, 87–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Soechting, J. F. & Lacquaniti, F. Quantitative evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. J. Neurophysiol. 59, 1296–1313 (1988).

    Article  CAS  PubMed  Google Scholar 

  142. Burdet, E., Osu, R., Franklin, D. W., Milner, T. E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, T., Dordevic, G. S. & Shadmehr, R. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Biol. Cybern. 85, 437–448 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Meyer-Lohmann, J., Conrad, B., Matsunami, K. & Brooks, V. B. Effects of dentate cooling on precentral unit activity following torque pulse injections into elbow movements. Brain Res. 94, 237–251 (1975).

    Article  CAS  PubMed  Google Scholar 

  145. Conrad, B. in Cerebral Motor Control in Man: Long Loop Mechanisms (ed. Desmedt, J. E) 123–140 (Karger, Basel, 1978).

    Google Scholar 

  146. Vilis, T., Hore, J., Meyer-Lohmann, J. & Brooks, V. B. Dual nature of the precentral responses to limb perturbations revealed by cerebellar cooling. Brain Res. 117, 336–340 (1976).

    Article  CAS  PubMed  Google Scholar 

  147. Strick, P. L. The influence of motor preparation on the response of cerebellar neurons to limb displacements. J. Neurosci. 3, 2007–2020 (1983).

    Article  CAS  PubMed  Google Scholar 

  148. Strick, P. L. in Cerebral Motor Control in Man: Long Loop Mechanisms. (ed. Desmedt, J. E) 85–93 (Karger, Basel, 1978).

    Google Scholar 

  149. Pellison, D., Prablanc, C., Goodale, M. A. & Jeannerod, M. Visual control of reaching movements without vision of the limb: II. Evidence of fast, unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp. Brain Res. 62, 303–311 (1986).

    Google Scholar 

  150. Prablanc, C. & Martin, O. Automatic control during hand reaching at undetected two-dimensional target displacements. J. Neurophysiol. 67, 455–469 (1992).

    Article  CAS  PubMed  Google Scholar 

  151. Desmurget, M. & Grafton, S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Shen, L. & Alexander, G. E. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. J. Neurophysiol. 77, 1171–1194 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neurosci. 2, 563–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Grea, H. et al. A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40, 2471–2480 (2002).

    Article  PubMed  Google Scholar 

  155. Bossom, J. Movement without proprioception. Brain Res. 71, 285–296 (1974).

    Article  CAS  PubMed  Google Scholar 

  156. Taub, E., Goldberg, I. A. & Taub, P. Deafferentation in monkeys: pointing at a target without visual feedback. Exp. Neurol. 46, 178–186 (1975).

    Article  CAS  PubMed  Google Scholar 

  157. Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. Control of limb dynamics in normal subjects and patients without proprioception. J. Neurophysiol. 73, 820–835 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Desmedt, J. E. Cerebral Motor Control in Man: Long Loop Mechanisms (Karger, Basel, 1978).

    Google Scholar 

  159. Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J. Neurophysiol. 39, 1062–1068 (1976).

    Article  CAS  PubMed  Google Scholar 

  160. Prut, Y. & Fetz, E. E. Primate spinal interneurons show pre-movement instructed delay activity. Nature 401, 590–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  162. Cohen, Y. E. & Andersen, R. A. A common reference frame for movement plans in the posterior parietal cortex. Nature Rev. Neurosci. 3, 553–562 (2002).

    Article  CAS  Google Scholar 

  163. Cisek, P. & Kalaska, J. F. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 945–948 (The MIT Press, Cambridge, 2003).

    Google Scholar 

  164. Thach, W. T., Goodkin, H. P. & Keating, J. G. The cerebellum and the adaptive coordination of movement. Annu. Rev. Neurosci. 15, 403–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  165. Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).

    Google Scholar 

  166. Kawato, M. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A) 190–195 (The MIT Press, Cambridge, 2003).

    Google Scholar 

  167. Houk, J. C., Keifer, J. & Barto, A. G. Distributed motor commands in the limb premotor network. Trends Neurosci. 16, 27–33 (1993).

    Article  CAS  PubMed  Google Scholar 

  168. Bastian, A. J. Cerebellar limb ataxia: abnormal control of self-generated and external forces. Ann. NY Acad. Sci. 978, 16–27 (2002).

    Article  PubMed  Google Scholar 

  169. Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Dum, R. P. & Strick, P. L. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89, 634–639 (2003). The use of retrograde transneuronal labelling with herpes virus from injections in different areas of the cerebral cortex shows that the dentate nucleus contains anatomically separate regions for motor and non-motor domains.

    Article  PubMed  Google Scholar 

  171. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Evarts, E. V. & Tanji, J. Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J. Neurophysiol. 39, 1069–1080 (1976).

    Article  CAS  PubMed  Google Scholar 

  173. Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nature Neurosci. 6, 1309–1316 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Loeb, G. E., Brown, I. E. & Cheng, E. J. A hierarchical foundation for models of sensorimotor control. Exp. Brain Res. 126, 1–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Todorov, E. & Li, W. Optimal control methods suitable for biomechanical systems. Proc. 25th Ann. Int. Conf. IEEE Eng. Biol. Med. Soc. 2, 1758–1761 (2003).

    Article  Google Scholar 

  176. Marr, D. Vision (Freeman, San Francisco, 1982).

    Google Scholar 

  177. Barto, A. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 968–972 (The MIT Press, Cambridge, 2003).

    Google Scholar 

  178. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Sanes, J. N. Neocortical mechanisms in motor learning. Curr. Opin. Neurobiol. 13, 225–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Li, C. S., Padoa-Schioppa, C. & Bizzi, E. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30, 593–607 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Paz, R., Boraud, T., Natan, C., Bergman, H. & Vaadia, E. Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nature Neurosci. 6, 882–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Wise, S. P., Moody, S. L., Blomstrom, K. J. & Mitz, A. R. Changes in motor cortical activity during visuomotor adaptation. Exp. Brain Res. 121, 285–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  184. Kuypers, H. G. J. M. in Handbook of Physiology Sec. 1 Vol. II (ed. Brooks, V. B.) 597–666 (American Physiological Society, Chicago, 1981).

    Google Scholar 

  185. Murray, E. A. & Coulter, J. D. Organization of corticospinal neurons in the monkey. J. Comp. Neurol. 195, 339–365 (1981).

    Article  CAS  PubMed  Google Scholar 

  186. Lackner, J. R. & DiZio, P. A. Aspects of body self-calibration. Trends Cogn. Sci. 4, 279–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Scott, S. H. Optimal strategies for movement: success with variability. Nature Neurosci. 5, 1110–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by research grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada. I am also supported by a CIHR Investigator Award. I would also like to acknowledge expert technical support from K. Moore and J. Swaine, as well as constructive criticisms on this manuscript from P. K. Rose, D. P. Munoz, I. Kurtzer, T. Herter and other members of the CIHR Group in Sensorimotor Research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S.S. holds a US patent for a robotic device that is used to study limb motor function.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

motor neurons and spinal control of movement

motor output from the brain and spinal cord

motor system organization

proprioceptive sensory feedback

Scott's laboratory homepage

Glossary

MUSCULAR TORQUE

(or moment). Each muscle generates force from muscle contraction (active) and elastic forces (passive). Muscular torque for a muscle equals its total force multiplied by its moment arm (the perpendicular distance between a muscle's line of action and the joint centre of rotation).

EQUILIBRIUM POINT MODELS

A class of models that assume the CNS can control the equilibrium position established by the balance of force that is generated by the spring-like behaviour of muscle.

STATE VARIABLES

Estimates of the position of the limb or forces acting within or on the limb (or their derivative). State variables are transformed by corresponding feedback gains to generate motor output commands.

ALPHA MOTOR NEURON

Motor neurons that innervate extrafusal muscle fibres that generate force.

GAMMA MOTOR NEURON

Motor neurons that innervate intrafusal muscle fibres associated with muscle spindles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, S. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5, 532–545 (2004). https://doi.org/10.1038/nrn1427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing