Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping cups into phagosomes and macropinosomes

Key Points

  • Phagocytosis is the ingestion by cells of particles or other cells. Receptors in membranes of phagocytic cells organize the advance of the plasma membrane and the actin cytoskeleton around target particles, forming intracellular membrane-bounded compartments called phagosomes.

  • Macropinocytosis is the ingestion by cells of extracellular solutes and fluid into 0.2–10-μm diameter vesicles, or macropinosomes. Macropinosomes can form spontaneously or in response to activation of cell-surface receptors.

  • Common signalling mechanisms organize the construction of phagocytic or macropinocytic cup-shaped invaginations of the plasma membrane. Receptors, GTPases of the Ras superfamily and membrane phospholipids regulate the component activities of actin-filament assembly, disassembly and contraction, as well as the fusion of membrane vesicles with cup membranes.

  • Imaging of molecular dynamics in living cells indicates that phagocytic and macropinocytic cups exhibit distinct patterns of signalling that correspond to the early and late stages of their formation.

  • Activated receptor complexes (short-range signals) generate diffusible signal molecules (medium-range signals) that are subject to feedback regulation and that, at suprathreshold concentrations, can activate transitions from early to late stages of signalling. Phospholipids generated in the confines of a forming cup integrate and amplify signalling in that region of the membrane.

  • Receptor-mediated signal transduction for phagocytosis and macropinocytosis is modulated by cell structure and is conditional on feedback regulation that is related to cup integrity, particle stiffness and particle shape.

Abstract

The ingestion of particles or cells by phagocytosis and of fluids by macropinocytosis requires the formation of large endocytic vacuolar compartments inside cells by the organized movements of membranes and the actin cytoskeleton. Fc-receptor-mediated phagocytosis is guided by the zipper-like progression of local, receptor-initiated responses that conform to particle geometry. By contrast, macropinosomes and some phagosomes form with little or no guidance from receptors. The common organizing structure is a cup-shaped invagination of the plasma membrane that becomes the phagosome or macropinosome. Recent studies, focusing on the physical properties of forming cups, indicate that a feedback mechanism regulates the signal transduction of phagocytosis and macropinocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The movements of phagocytosis and macropinocytosis.
Figure 2: Short- and medium-range signalling by activated Fc and EGFR.
Figure 3: Distinct patterns of signalling in phagocytic cups.
Figure 4: Context-dependent signal transduction in cups.

Similar content being viewed by others

References

  1. Stuart, L. M. & Ezekowitz, R. A. Phagocytosis and comparative innate immunity: learning on the fly. Nature Rev. Immunol. 8, 131–141 (2008).

    CAS  Google Scholar 

  2. Watts, C. & Amigorena, S. Antigen traffic pathways in dendritic cells. Traffic 1, 312–317 (2000).

    CAS  PubMed  Google Scholar 

  3. Blander, J. M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nature Immunol. 7, 1029–1035 (2006).

    CAS  Google Scholar 

  4. Reddien, P. W. & Horvitz, H. R. The engulfment process of programmed cell death in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 20, 193–221 (2004).

    CAS  PubMed  Google Scholar 

  5. Amstutz, B. et al. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J. 27, 956–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  7. Huynh, K. K., Kay, J. G., Stow, J. L. & Grinstein, S. Fusion, fission, and secretion during phagocytosis. Physiology 22, 366–372 (2007).

    CAS  PubMed  Google Scholar 

  8. Cox, D. & Greenberg, S. Phagocytic signaling strategies: Fcγ receptor-mediated phagocytosis as a model system. Sem. Immunol. 13, 339–345 (2001).

    CAS  Google Scholar 

  9. Griffin, F. M., Griffin, J. A. & Silverstein, S. C. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 144, 788–809 (1976).

    PubMed  Google Scholar 

  10. Wright, S. D. & Silverstein, S. C. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature 309, 359–361 (1984).

    CAS  PubMed  Google Scholar 

  11. Swanson, J. A. et al. A contractile activity that closes phagosomes in macrophages. J. Cell Sci. 112, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  12. Hoppe, A. D. & Swanson, J. A. Cdc42, Rac1 and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell 15, 3509–3519 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Herant, M., Heinrich, V. & Dembo, M. Mechanics of neutrophil phagocytosis: experiments and quantitative models. J. Cell Sci. 119, 1903–1913 (2006).

    CAS  PubMed  Google Scholar 

  14. Cox, D. et al. Myosin X is a downstream effector of PI(3)K during phagocytosis. Nature Cell Biol. 4, 469–477 (2002).

    CAS  PubMed  Google Scholar 

  15. Diakonova, M., Bokoch, G. & Swanson, J. A. Dynamics of cytoskeletal proteins during Fcγ receptor-mediated phagocytosis in macrophages. Mol. Biol. Cell 13, 402–411 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Araki, N., Hatae, T., Furukawa, A. & Swanson, J. A. Phosphoinositide-3-kinase-independent contractile activities associated with Fcγ-receptor-mediated phagocytosis and macropinocytosis in macrophages. J. Cell Sci. 116, 247–257 (2003).

    CAS  PubMed  Google Scholar 

  17. Braun, V. et al. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J. 23, 4166–4176 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Czibener, C. et al. Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes. J. Cell Biol. 174, 997–1007 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    CAS  PubMed  Google Scholar 

  20. Lee, W. L., Mason, D., Schreiber, A. D. & Grinstein, S. Quantitative analysis of membrane remodeling at the phagocytic cup. Mol. Biol. Cell 18, 2883–2892 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kay, J. G., Murray, R. Z., Pagan, J. K. & Stow, J. L. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J. Biol. Chem. 281, 11949–11954 (2006).

    CAS  PubMed  Google Scholar 

  22. Tse, S. M. L. et al. Differential role of actin, clathrin, and dynamin in Fcγ receptor-mediated endocytosis and phagocytosis. J. Biol. Chem. 278, 3331–3338 (2003).

    CAS  PubMed  Google Scholar 

  23. Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol. 7, 894–900 (2005).

    CAS  PubMed  Google Scholar 

  24. Weed, S. A. & Parsons, J. T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20, 6418–6434 (2001).

    CAS  PubMed  Google Scholar 

  25. Swanson, J. A. Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J. Cell Sci. 94, 135–142 (1989).

    CAS  PubMed  Google Scholar 

  26. Li, G., D'Souza-Schorey, C., Barbieri, M. A., Cooper, J. A. & Stahl, P. D. Uncoupling of membrane ruffling and pinocytosis during Ras signal transduction. J. Biol. Chem. 272, 10337–10340 (1997).

    CAS  PubMed  Google Scholar 

  27. Alpuche-Aranda, C. M., Racoosin, E. L., Swanson, J. A. & Miller, S. I. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J. Exp. Med. 179, 601–608 (1994).

    CAS  PubMed  Google Scholar 

  28. Watarai, M. et al. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med. 194, 1081–1095 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    CAS  PubMed  Google Scholar 

  30. Griffin, F. M., Griffin, J. A., Leider, J. E. & Silverstein, S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142, 1263–1282 (1975).

    PubMed  Google Scholar 

  31. Krysko, D. V., D'Herde, K. & Vandenabeele, P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11, 1709–1726 (2006).

    PubMed  Google Scholar 

  32. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007). Reports the identification of a receptor that binds PtdSer presented on apoptotic cells and demonstrates a direct connection to Rac activation via ELMO and Dock180.

    CAS  PubMed  Google Scholar 

  33. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    CAS  PubMed  Google Scholar 

  34. Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007).

    CAS  Google Scholar 

  35. Hoffmann, P. R. et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell Biol. 155, 649–659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Krysko, D. V. et al. Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ. 13, 2011–2022 (2006).

    CAS  PubMed  Google Scholar 

  37. Caron, E., Self, A. J. & Hall, A. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr. Biol. 10, 974–978 (2000).

    CAS  PubMed  Google Scholar 

  38. Dewitt, S., Tian, W. & Hallett, M. B. Localised PtdIns(3,4,5)P3 or PtdIns(3,4)P2 at the phagocytic cup is required for both phagosome closure and Ca2+ signalling in HL60 neutrophils. J. Cell Sci. 119, 443–451 (2006).

    CAS  PubMed  Google Scholar 

  39. Kaplan, G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immunol. 6, 797–807 (1977).

    CAS  PubMed  Google Scholar 

  40. Allen, L.-A. H. & Aderem, A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184, 627–637 (1996).

    CAS  PubMed  Google Scholar 

  41. Hall, A. B. et al. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcγR- and complement-mediated phagocytosis. Immunity 24, 305–316 (2006). Demonstrates that the Rac GEF Vav is necessary for CR3-mediated phagocytosis, but not for FcR-mediated phagocytosis. This finding is at odds with studies using other cells, which indicate a role for Vav-activated Rac in FcR-, but not CR3-mediated, phagocytosis.

    CAS  PubMed  Google Scholar 

  42. Sobota, A. et al. Binding of IgG-opsonized particles to FcγR is an active stage of phagocytosis that involves receptor clustering and phosphorylation. J. Immunol. 175, 4450–4457 (2005).

    CAS  PubMed  Google Scholar 

  43. Gu, H., Botelho, R. J., Yu, M., Grinstein, S. & Neel, B. G. Critical role for scaffolding adapter Gab2 in FcγR-mediated phagocytosis. J. Cell Biol. 161, 1151–1161 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).

    CAS  PubMed  Google Scholar 

  45. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    CAS  PubMed  Google Scholar 

  46. Racoosin, E. L. & Swanson, J. A. Macrophage colony stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J. Exp. Med. 170, 1635–1648 (1989).

    CAS  PubMed  Google Scholar 

  47. Bar-Sagi, D. & Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by Ras proteins. Science 233, 1061–1066 (1986).

    CAS  PubMed  Google Scholar 

  48. Amyere, M. et al. Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation phosphoinositide 3-kinase and phospholipase C. Mol. Biol. Cell 11, 3453–3467 (2000). Demonstrates a role for PLCγ downstream of PI3K during constitutive macropinocytosis in transformed cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Futaki, S., Nakase, I., Tadokoro, A., Takeuchi, T. & Jones, A. T. Arginine-rich peptides and their internalization mechanisms. Biochem. Soc. Trans. 35, 784–787 (2007).

    CAS  PubMed  Google Scholar 

  50. Schlessinger, J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306, 1506–1507 (2004).

    CAS  PubMed  Google Scholar 

  51. Donepudi, M. & Resh, M. D. c-Src trafficking and co-localization with the EGF receptor promotes EGF ligand-independent EGF receptor activation and signaling. Cell Signal. 20, 1359–1367 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yeung, T. & Grinstein, S. Lipid signaling and the modulation of surface charge during phagocytosis. Immunol. Rev. 219, 17–36 (2007).

    CAS  PubMed  Google Scholar 

  53. Miki, H. & Takenawa, T. Regulation of actin dynamics by WASP family proteins. J. Biochem. 134, 309–313 (2003).

    CAS  PubMed  Google Scholar 

  54. Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1367 (2000). First demonstration of localized changes in phosphoinositides and DAG concentrations in unclosed phagocytic cups.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mercanti, V. et al. Selective membrane exclusion in phagocytic and macropinocytic cups. J. Cell Sci. 119, 4079–4087 (2006). Demonstrates the exclusion of membrane proteins from phagocytic and macropinocytic cups in D. discoideum.

    CAS  PubMed  Google Scholar 

  56. Araki, N., Egami, Y., Watanabe, Y. & Hatae, T. Phosphoinositide metabolism during membrane ruffling and macropinosome formation in EGF-stimulated A431 cells. Exp.Cell Res. 313, 1496–1507 (2007). Using quantitative fluorescence microscopy of PtdIns dynamics during macropinosome formation, this paper shows the abrupt increase in 3-phosphatidylinositols that precede macropinosome closure.

    CAS  PubMed  Google Scholar 

  57. Vieira, O. V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001). This paper provides the first images of 3-phosphatidylinositol in forming phagocytic cups and of the transitions from one species of 3-phosphatidylinositol to another that accompany phagosome maturation.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Araki, N., Johnson, M. T. & Swanson, J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis in macrophages. J. Cell Biol. 135, 1249–1260 (1996).

    CAS  PubMed  Google Scholar 

  59. Cox, D., Tseng, C.-C., Bjekic, G. & Greenberg, S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem. 274, 1240–1247 (1999).

    CAS  PubMed  Google Scholar 

  60. Wennström, S. et al. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 4, 385–393 (1994).

    PubMed  Google Scholar 

  61. Larsen, E. C. et al. Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J. Immunol. 165, 2809–2817 (2000).

    CAS  PubMed  Google Scholar 

  62. Cheeseman, K. L. et al. Targeting of protein kinase C-ε during Fcγ receptor-dependent phagocytosis requires the ε-C1B domain and phospholipase C-γ1. Mol. Biol. Cell 17, 799–813 (2006). Demonstrates that PKCε recruitment to phagosomes requires upstream activation of PLCγ1.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Iyer, S. S., Barton, J. A., Bourgoin, S. & Kusner, D. J. Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J. Immunol. 173, 2615–2623 (2004).

    CAS  PubMed  Google Scholar 

  64. Corrotte, M. et al. Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 7, 365–377 (2006).

    CAS  PubMed  Google Scholar 

  65. Lennartz, M. R. et al. Phospholipase A2 inhibition results in sequestration of plasma membrane into electronlucent vesicles during IgG-mediated phagocytosis. J. Cell Sci. 110, 2041–2052 (1997).

    CAS  PubMed  Google Scholar 

  66. Hancock, J. F. Ras proteins: different signals from different locations. Nature Rev. Mol. Cell Biol. 4, 373–384 (2003).

    CAS  Google Scholar 

  67. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    CAS  PubMed  Google Scholar 

  68. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tolias, K. F. et al. Type Ia phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr. Biol. 10, 153–156 (2000).

    CAS  PubMed  Google Scholar 

  70. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. M. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  71. Takenawa, T. & Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nature Rev. Mol. Cell Biol. 8, 37–48 (2007).

    CAS  Google Scholar 

  72. Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    CAS  PubMed  Google Scholar 

  73. Liberali, P. et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 27, 970–981 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  75. Li, F. & Higgs, H. N. The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    CAS  PubMed  Google Scholar 

  76. Donaldson, J. G. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573–41576 (2003).

    CAS  PubMed  Google Scholar 

  77. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    CAS  PubMed  Google Scholar 

  78. Caron, E. Rac signalling: a radical view. Nature Cell Biol. 5, 185–187 (2003).

    CAS  PubMed  Google Scholar 

  79. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    CAS  PubMed  Google Scholar 

  80. Garrett, W. S. et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102, 325–334 (2000).

    CAS  PubMed  Google Scholar 

  81. Lanzetti, L., Palamidessi, A., Areces, L., Scita, G. & Di Fiore, P. P. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429, 309–314 (2004).

    CAS  PubMed  Google Scholar 

  82. Sun, P. et al. Small GTPase Rah/Rab34 is associated with membrane ruffles and macropinosomes and promotes macropinosome formation. J. Biol. Chem. 278, 4063–4071 (2003).

    CAS  PubMed  Google Scholar 

  83. Porat-Shliom, N., Kloog, Y. & Donaldson, J. G. A unique platform for H-Ras signaling involving clathrin-independent endocytosis. Mol. Biol. Cell 19, 765–775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ellerbroek, S. M. et al. SGEF, a RhoG guanine nucleotide exchange factor that stimulates macropinocytosis. Mol. Biol. Cell 15, 3309–3319 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakaya, M., Tanaka, M., Okabe, Y., Hanayama, R. & Nagata, S. Opposite effects of Rho family GTPases on engulfment of apoptotic cells by macrophages. J. Biol. Chem. 281, 8836–8842 (2006).

    CAS  PubMed  Google Scholar 

  86. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998). This paper demonstrates that two distinct signal-transduction pathways underlie CR3- and FcR-mediated phagocytosis.

    CAS  PubMed  Google Scholar 

  87. Patel, J. C., Hall, A. & Caron, E. Vav regulates activation of Rac but not Cdc42 during FcγR-mediated phagocytosis. Mol. Biol. Cell 13, 1215–1226 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. deBakker, C. D. et al. Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr. Biol. 14, 2208–2216 (2004).

    CAS  PubMed  Google Scholar 

  89. Lee, W. L., Cosio, G., Ireton, K. & Grinstein, S. Role of CrkII in Fcγ receptor-mediated phagocytosis. J. Biol. Chem. 282, 11135–11143 (2007).

    CAS  PubMed  Google Scholar 

  90. Corbett-Nelson, E. F., Mason, D., Marshall, J. G., Collette, Y. & Grinstein, S. Signaling-dependent immobilization of acylated proteins in the inner monolayer of the plasma membrane. J. Cell Biol. 174, 255–265 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kamen, L. A., Levinsohn, J. & Swanson, J. A. Differential association of phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes. Mol. Biol. Cell 18, 2463–2475 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Seveau, S. et al. A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell. Microbiol. 9, 790–803 (2007).

    CAS  PubMed  Google Scholar 

  93. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006). Describes a novel fluorescence microscopy method for measuring surface potential on surfaces of cytoplasmic membranes and uses it to demonstrate a role for surface potential in retaining Ras and Rac at plasma membranes.

    CAS  PubMed  Google Scholar 

  94. Falasca, M. et al. Activation of phospholipase C γ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17, 414–422 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Beemiller, P., Hoppe, A. D. & Swanson, J. A. A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcγ receptor-mediated phagocytosis. PLoS Biol. 4, e162 (2006). Visualizes distinct patterns of activation and deactivation for ARF1 and ARF6 during phagocytosis, and demonstrates a role for PI3K in organizing the signal transition.

    PubMed  PubMed Central  Google Scholar 

  96. Scott, C. C. et al. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J. Cell Biol. 169, 139–149 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Oberbanscheidt, P., Balkow, S., Kuhnl, J., Grabbe, S. & Bahler, M. SWAP-70 associates transiently with macropinosomes. Eur. J. Cell Biol. 86, 13–24 (2007).

    CAS  PubMed  Google Scholar 

  98. Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S. H. & Schlessinger, J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol. Cell. Biol. 20, 1448–1459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, Z. Y. et al. Differential kinase requirements in human and mouse Fc-γ receptor phagocytosis and endocytosis. J. Leukoc. Biol. 80, 1553–1562 (2006).

    CAS  PubMed  Google Scholar 

  100. Paolini, R. et al. Activation of Syk tyrosine kinase is required for c-Cbl-mediated ubiquitination of Fcε RI and Syk in RBL cells. J. Biol. Chem. 277, 36940–36947 (2002).

    CAS  PubMed  Google Scholar 

  101. Lee, W. L., Kim, M. K., Schreiber, A. D. & Grinstein, S. Role of ubiquitin and proteasomes in phagosome maturation. Mol. Biol. Cell 16, 2077–2090 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Beningo, K. A. & Wang, Y.-L. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115, 849–856 (2002). Using opsonized polymer gels with variable crosslinker and stiffness, this work shows that FcR-mediated phagocytosis requires mechanical resistance by the particle.

    CAS  PubMed  Google Scholar 

  103. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006). Shows that uniformly opsonized particles of various shapes are only ingested if the surface that contacts the macrophage membrane is less than a minimum tangent angle. This indicates a level of signal integration in forming phagocytic cups.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Griffin, F. M., Bianco, C. & Silverstein, S. C. Characterization of the macrophage receptor for complement and demonstration of its functional independence from the receptor for the Fc portion of immunoglobulin G. J. Exp. Med. 141, 1269–1277 (1975).

    PubMed  Google Scholar 

  105. May, R. C., Caron, E., Hall, A. & Machesky, L. M. Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR and CR3. Nature Cell Biol. 2, 246–248 (2000).

    CAS  PubMed  Google Scholar 

  106. Seth, A., Otomo, C. & Rosen, M. K. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLα and mDia1. J. Cell Biol. 174, 701–713 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Colucci-Guyon, E. et al. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr. Biol. 15, 2007–2012 (2005).

    CAS  PubMed  Google Scholar 

  108. Lorenzi, R., Brickell, P. M., Katz, D. R., Kinnon, C. & Thrasher, A. J. Wiskott–Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95, 2943–2946 (2000).

    CAS  PubMed  Google Scholar 

  109. Abou-Kheir, W., Isaac, B., Yamaguchi, H. & Cox, D. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J. Cell Sci. 121, 379–390 (2008).

    CAS  PubMed  Google Scholar 

  110. Yamada, H. et al. Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol. Biol. Cell 18, 4669–4680 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yan, M., Collins, R. F., Grinstein, S. & Trimble, W. S. Coronin-1 function is required for phagosome formation. Mol. Biol. Cell 16, 3077–3087 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful for the suggestions of S. Yoshida and A. Hoppe, and for funding from the National Institute of Allergy and Infectious Disease (NIAID) and the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (movie) | Activation of Rac1 during M–CSF-induced macropinocytosis.

Bone marrow-derived mouse macrophages expressing fluorescence resonance energy transfer (FRET) probes for Rac1 activity (yellow fluorescent protein (YFP)–Rac1 and cyan fluorescent protein (CFP)–PBD (p21– binding domain)) were stimulated with 200 ng/ml macrophage colony-stimulating factor (M–CSF) just prior to the first frame of the video sequence. The left panel shows time-lapse, phase-contrast microscopy immediately following the addition of M–CSF. Extensive ruffling is evident as the dark folds of plasma membrane that form and migrate from the cell periphery. The right panel shows the same phase–contrast sequence with an overlay showing GTP–bound Rac1, as detected by FRET microscopy. Rac1 was activated initially throughout the periphery of the cell, but its activation soon became limited to the forming macropinosomes. Images were collected every 20 sec and played back at 6 frames/sec (that is, 100x real time). Sequence courtesy of S. Yoshida, University of Michigan Medical School, Ann Arbor, Michigan, USA. (MOV 237 kb)

Related links

Related links

FURTHER INFORMATION

Joel Swanson's homepage

Glossary

Clathrin

A protein that facilitates endocytosis of receptors in small (>0.1 μm in diameter) vesicles by forming and reorganizing a coat on the cytoplasmic face of a membrane.

Fc receptor

A class of cell-surface receptors that bind to the Fc domain of immunoglobulin molecules such as immunoglobulin G.

Opsonize

The coating of a particle with molecules that renders it capable of being bound and ingested by phagocytic cells. From Greek, meaning 'to prepare a meal'.

Recycling endosomes

A subclass of endocytic vesicles that communicate by vesicle fusion with other endocytic compartments and regions of the plasma membrane, including phagocytic cups.

Ruffle

A thin, sheet-like protrusion of the plasma membrane that extends from the cell surface through the formation and growth of a branched network of actin filaments. Ruffles either retract into the cytoplasm or close into macropinosomes.

Gelation

The formation of a crosslinked matrix of polymer. In the actin cytoskeleton, actin filaments are bridged by crosslinking proteins into a gel. The regulated dissolution of that matrix (solation) can be coupled with the activation of contractile proteins to effect motility.

Lamellipodium

A sheet-like protrusion of the cell surface that contains a branched network of actin filaments that extends along surfaces during cell motility. Lamellipodia are structurally analogous to ruffles and phagocytic cups.

Microdomain

A small region of membrane, rich in cholesterol or sphingolipids, to which certain classes of lipid-anchored peripheral membrane proteins, such as Src-family kinases, localize preferentially.

Pleckstrin-homology domain

A structural domain that is common in many signalling proteins and that can bind specific phosphoinositol sugars, including those that comprise membrane phosphoinositides.

Ras superfamily

A large group of small proteins that share structural features and the capabilities of regulated binding to GTP, GDP, membranes, proteins that regulate the species of bound nucleotide and various additional effector proteins.

Multivesicular body

An intracellular membranous compartment that contains intracellular vesicles that are derived from its delimiting membrane. Multivesicular bodies communicate by vesicle fusion with endosomes, lysosomes and sometimes also with the plasma membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, J. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9, 639–649 (2008). https://doi.org/10.1038/nrm2447

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing