Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ARF proteins: roles in membrane traffic and beyond

Key Points

  • The unique cellular distribution of individual ADP-ribosylation factor (ARF) proteins and the molecules with which they interact are vital in dictating ARF-protein function. The mutually exclusive properties in cellular distribution and function of mammalian ARF1 and ARF6 have been extensively investigated. However, parallels in the cellular roles of both these ARF proteins in vesicle budding and actin remodelling is becoming increasingly evident.

  • ARF1–GTP drives COPI-mediated vesicle budding along the biosynthetic and secretory pathway. ARF1 also regulates the formation of clathrin-coated vesicles at the trans-Golgi network by promoting the recruitment of adaptor-protein complexes AP-1, AP-3, AP-4, and the GGAs from the cytosol onto membranes. ARF1 activation has been shown to stimulate the assembly of spectrin and the actin cytoskeleton on Golgi membranes.

  • Nucleotide exchange on ARF is regulated by the Sec7-domain-containing GEFs. Site-specific targeting of GBF- and BIG-family GEFs to Golgi subcompartments might have a prominent role in the formation of coats at specific locations. Membrane lipid composition and temporal aspects of vesicle budding can affect the targeting of ARF1 to Golgi membranes.

  • GTP hydrolysis on ARF1 is required for the dissociation of coat proteins from transport vesicles, and is mediated by a family of ARF GAPs. GTP-hydrolysis on ARF1 is also required for cargo packaging, and ARF GAPs might function to couple cargo sorting with vesicle formation.

  • ARF6 localizes to the plasma membrane and endosomal compartments, in which it regulates clathrin-dependent endocytic membrane trafficking, as well as the trafficking and sorting of molecules that lack cytoplasmic AP-2 and clathrin sorting sequences, through a unique endocytic route. ARF6 has also been implicated in actin remodelling at the cell periphery. The effects of ARF6 on the actin cytoskeleton are thought to occur through the activation of the Rac1 GTPase and/or its effect on phopholipid metabolism.

  • The ARF6-GTPase cycle can impinge on several cellular events that require rapid changes in cell-surface morphology and as such, directly impinges on cellular processes such as phagocytosis, cell–cell adhesion, cell migration, tumour-cell invasion and cytokinesis.

Abstract

The ADP-ribosylation factor (ARF) small GTPases regulate vesicular traffic and organelle structure by recruiting coat proteins, regulating phospholipid metabolism and modulating the structure of actin at membrane surfaces. Recent advances in our understanding of the signalling pathways that are regulated by ARF1 and ARF6, two of the best characterized ARF proteins, provide a molecular context for ARF protein function in fundamental biological processes, such as secretion, endocytosis, phagocytosis, cytokinesis, cell adhesion and tumour-cell invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of COPI-coat assembly and vesicle budding by ARF1.
Figure 2: Regulation of actin assembly by ARF1 during vesicle formation at the Golgi.
Figure 3: ARF6 regulates clathrin-dependent and clathrin-independent endocytic pathways.
Figure 4: Multiple roles for ARF6 at the cell periphery.
Figure 5: ARF6-mediated regulation of Rac1 activation in epithelial cells.

Similar content being viewed by others

References

  1. Kahn, R. & Gilman, A. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. Biol. Chem. 261, 7906–7911 (1986).

    CAS  PubMed  Google Scholar 

  2. Jackson, C. L. & Casanova, J. E. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell. Biol. 10, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Randazzo, P. A. & Hirsch, D. S. Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell Signal 16, 401–413 (2004). This review summarizes a series of studies on ARF-dependent and -independent activities of large multi-domain-ARF GAPs in the regulation of cell function.

    Article  CAS  PubMed  Google Scholar 

  4. Amor, J. C., Harrison, D. H., Kahn, R. A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kahn, R. A. et al. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol. 172, 645–650 (2006). Provides a complete and up-to-date nomenclature for the human members of the ARF family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Claude, A. et al. GBF1: A novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J. Cell Biol. 146, 71–84 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takatsu, H., Yoshino, K., Toda, K. & Nakayama, K. GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem. J. 365, 369–378 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D'Souza-Schorey, C., Li, G., Colombo, M. I. & Stahl, P. D. A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175–1178 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Peters, P. J. et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol. 128, 1003–1017 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Burd, C. G., Strochlic, T. I. & Gangi Setty, S. R. Arf-like GTPases: not so Arf-like after all. Trends Cell Biol. 14, 687–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kuge, O. et al. Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol. 125, 51–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Mueller, A. G., Joost, H. G. & Schurmann, A. Mouse ARF-related protein 1: genomic organization and analysis of its promoter. Biochem. Biophys. Res. Commun. 292, 113–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Murtagh, J. J. Jr. et al. Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. Isolation of a gene encoding an approximately 20-kDa ADP-ribosylation factor. J. Biol. Chem. 267, 9654–9662 (1992).

    CAS  PubMed  Google Scholar 

  15. Li, Y. et al. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J. 18, 1834–1850 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pasqualato, S., Menetrey, J., Franco, M. & Cherfils, J. The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2, 234–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin, O. H., Couvillon, A. D. & Exton, J. H. Arfophilin is a common target of both class II and class III ADP-ribosylation factors. Biochemistry 40, 10846–10852 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Shin, O. H. & Exton, J. H. Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1. Biochem. Biophys. Res. Commun. 285, 1267–1273 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kawasaki, M., Nakayama, K. & Wakatsuki, S. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr. Opin. Struct. Biol. 15, 681–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C. & Sternweis, P. C. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75, 1137–1144 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Cockcroft, S. et al. Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523–526 (1994). References 20 and 21 provide the first evidence that the catalytic activity of phospholipase D is stimulated by ARF proteins using permeabilized cells and cell-free assays.

    Article  CAS  PubMed  Google Scholar 

  22. Al-Awar, O., Radhakrishna, H., Powell, N. N. & Donaldson, J. G. Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Mol. Cell Biol. 20, 5998–6007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stearns, T., Willingham, M. C., Botstein, D. & Kahn, R. A. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl Acad. Sci. USA 87, 1238–1242 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, M. C. S., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 1, 187–198 (2000).

    Article  CAS  Google Scholar 

  26. Bonifacino, J. S. The GGA proteins: adaptors on the move. Nature Rev. Mol. Cell Biol. 5, 23–32 (2004).

    Article  CAS  Google Scholar 

  27. Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R. & Orci, L. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl Acad. Sci. USA 95, 11199–11204 (1998). Shows that ARF1–GTP and coatomer comprise the minimum apparatus necessary to create a COPI-coated vesicle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Cox, R., Mason-Gamer, R. J., Jackson, C. L. & Segev, N. Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers. Mol. Biol. Cell 15, 1487–1505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawamoto, K. et al. GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat. Traffic 3, 483–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Shinotsuka, C., Waguri, S., Wakasugi, M., Uchiyama, Y. & Nakayama, K. Dominant-negative mutant of BIG2, an ARF-guanine nucleotide exchange factor, specifically affects membrane trafficking from the trans-Golgi network through inhibiting membrane association of AP-1 and GGA coat proteins. Biochem. Biophys. Res. Commun. 294, 254–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Mata, R., Szul, T., Alvarez, C. & Sztul, E. ADP-ribosylation factor/COPI-dependent events at the endoplasmic eeticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol. Biol. Cell 14, 2250–2261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szul, T. et al. Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1. Traffic 6, 374–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yamaji, R. et al. Identification and localization of two brefeldin A-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors in a macromolecular complex. Proc. Natl Acad. Sci. USA 97, 2567–2572 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, X., Lasell, T. K. & Melancon, P. Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol. Biol. Cell 13, 119–133 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niu, T. -K., Pfeifer, A. C., Lippincott-Schwartz, J. & Jackson, C. L. Dynamics of GBF1, a brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol. Biol. Cell 16, 1213–1222 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stamnes, M. A. et al. An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc. Natl Acad. Sci. USA 92, 8011–8015 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gommel, D. U. et al. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J. 20, 6751–6760 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majoul, I., Straub, M., Hell, S. W., Duden, R. & Soling, H. D. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell 1, 139–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S. Y., Yang, J. -S., Hong, W., Premont, R. T. & Hsu, V. W. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Honda, A., Al-Awar, O. S., Hay, J. C. & Donaldson, J. G. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J. Cell Biol. 168, 1039–1051 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Springer, S., Spang, A. & Schekman, R. A primer on vesicle budding. Cell 97, 145–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Tanigawa, G. et al. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol. 123, 1365–1371 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995). Cloning and the characterization of the first ARF1 GAP, ARFGAP1, and its recruitment to the Golgi complex.

    Article  CAS  PubMed  Google Scholar 

  45. Reinhard, C., Schweikert, M., Wieland, F. T. & Nickel, W. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc. Natl Acad. Sci. USA 100, 8253–8257 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003). Shows that increases in membrane curvature induce uncoating of COPI-coated vesicles, which is mediated by ARFGAP1 activity. This study proposes a model for COPI dynamics in which GTP hydrolysis in ARF1 is organized temporally and spatially according to the changes in lipid packing that are induced by the coat.

    Article  CAS  PubMed  Google Scholar 

  47. Nickel, W. et al. Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPgS in vitro. J. Cell. Sci. 111, 3081–3090 (1998).

    CAS  PubMed  Google Scholar 

  48. Malsam, J., Gommel, D., Wieland, F. T. & Nickel, W. A role for ADP ribosylation factor in the control of cargo uptake during COPI-coated vesicle biogenesis. FEBS Lett. 462, 267–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pepperkok, R., Whitney, J. A., Gomez, M. & Kreis, T. E. COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J. Cell. Sci. 113, 135–144 (2000).

    CAS  PubMed  Google Scholar 

  51. Yang, J. -S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lanoix, J. et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell Biol. 155, 1199–1212 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elsner, M. et al. Spatiotemporal dynamics of the COPI vesicle machinery. EMBO Rep. 4, 1000–1004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, W., Duden, R., Phair, R. D. & Lippincott-Schwartz, J. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J. Cell Biol. 168, 1053–1063 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aoe, T. et al. The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBO J. 16, 7305–7316 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Rein, U., Andag, U., Duden, R., Schmitt, H. D. & Spang, A. ARF-GAP-mediated interaction between the ER–Golgi v-SNAREs and the COPI coat. J. Cell Biol. 157, 395–404 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldberg, J. Structural and functional analysis of the ARF1–ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Bigay, J., Casella, J. F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24, 2244–2253 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Presley, J. F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Stamnes, M. A. & Rothman, J. E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73, 999–1005 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Traub, L. M., Ostrom, J. A. & Kornfeld, S. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol. 123, 561–573 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Ooi, C. E., Dell'Angelica, E. C. & Bonifacino, J. S. ADP-Ribosylation Factor 1 (ARF1) Regulates Recruitment of the AP-3 Adaptor Complex to Membranes. J. Cell Biol. 142, 391–402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boehm, M., Aguilar, R. C. & Bonifacino, J. S. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO. J. 20, 6265–6276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, Y., Drake, M. T. & Kornfeld, S. ADP-ribosylation factor 1 dependent clathrin-coat assembly on synthetic liposomes. Proc. Natl Acad. Sci. USA 96, 5013–5018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crottet, P., Meyer, D. M., Rohrer, J. & Spiess, M. ARF1:GTP, yyrosine-based signals, and phosphatidylinositol 4, 5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. Mol. Biol. Cell 13, 3672–3682 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Drake, M. T., Zhu, Y. & Kornfeld, S. The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. Mol. Biol. Cell 11, 3723–3736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Austin, C., Boehm, M. & Tooze, S. A. Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry 41, 4669–4677 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. De Matteis, M. A. & Godi, A. PI-loting membrane traffic. Nature Cell. Biol. 6, 487–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Collins, B. M., Watson, P. J. & Owen, D. J. The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev. Cell 4, 321–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Shiba, T. et al. Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nature Struct. Biol. 10, 386–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Shinotsuka, C., Yoshida, Y., Kawamoto, K., Takatsu, H. & Nakayama, K. Overexpression of an ADP-ribosylation factor-guanine nucleotide exchange factor, BIG2, uncouples brefeldin A-induced adaptor protein-1 coat dissociation and membrane tubulation. J. Biol. Chem. 277, 9468–9473 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Shin, H. -W., Morinaga, N., Noda, M. & Nakayama, K. BIG2, A guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. Mol. Biol. Cell 15, 5283–5294 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, Y., Traub, L. M. & Kornfeld, S. ADP-ribosylation factor 1 transiently activates high-Affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Mol. Biol. Cell 9, 1323–1337 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hirst, J., Motley, A., Harasaki, K., Peak Chew, S. Y. & Robinson, M. S. EpsinR: an ENTH domain-containing protein that interacts with AP-1. Mol. Biol. Cell 14, 625–641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meyer, D. M. et al. Oligomerization and dissociation of AP-1 adaptors are regulated by cargo signals and by ArfGAP1-induced GTP hydrolysis. Mol. Biol. Cell 16, 4745–4754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nie, Z. et al. Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1. Dev Cell 5, 513–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Nie, Z., Fei, J., Premont, R. T. & Randazzo, P. A. The Arf GAPs AGAP1 and AGAP2 distinguish between the adaptor protein complexes AP-1 and AP-3. J. Cell. Sci. 118, 3555–3566 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell. Biol. 14, 428–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Valderrama, F. et al. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2, 717–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Percival, J. M. et al. Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol. Biol. Cell 15, 268–280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Godi, A. et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl Acad. Sci. USA 95, 8607–8612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fucini, R. V. et al. Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes. J. Biol. Chem. 275, 18824–18829 (2000). The first demonstration that activation of ARF1 stimulates actin-filament assembly on Golgi membranes. This study indicates that regulation of the actin-based cytoskeleton might have an important role during ARF-mediated transport vesicle assembly or release on the Golgi.

    Article  CAS  PubMed  Google Scholar 

  85. Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell. 13, 621–631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell. Biol. 1, 280–287 (1999). Shows that ARF1 regulates cellular levels of PI(4,5)P 2 by controlling the recruitment and activity of phosphatidylinositol-4-phosphate kinase on Golgi membranes.

    Article  CAS  PubMed  Google Scholar 

  87. Jones, D. H. et al. Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J. Biol. Chem. 275, 13962–13966 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Beck, K. A. Spectrins and the Golgi. Biochim. Biophys. Acta 1744, 374–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, J. L., Lacomis, L., Erdjument-Bromage, H., Tempst, P. & Stamnes, M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS. Lett. 566, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Matas, O. B., Martinez-Menarguez, J. A. & Egea, G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 5, 838–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Wu, W. J., Erickson, J. W., Lin, R. & Cerione, R. A. The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Erickson, J. W., Zhang, C. -J., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dubois, T. et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nature Cell Biol. 7, 353–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Cao, H. et al. Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nature Cell Biol. 7, 483–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J. Cell Biol. 165, 781–788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Garcia-Mata, R. & Sztul, E. The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor. EMBO Rep. 4, 320–325 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Volpicelli-Daley, L. A., Li, Y., Zhang, C. -J. & Kahn, R. A. Isoform-selective effects of the depletion of ADP-ribosylation factors 1–5 on membrane traffic. Mol. Biol. Cell 16, 4495–4508 (2005). Shows that every combination of the double knock-downs of ARF1, ARF3, ARF4, and ARF5 yielded a distinct pattern of defects on membrane traffic. This study indicates that the cooperation of two ARF proteins at the same site might be a general feature of ARF signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999). Showed that ARF6 regulates levels of PI(4,5)P 2 at the cell surface by controlling the recruitment and activity of PIP5K Type Iα at sites of membrane ruffling.

    Article  CAS  PubMed  Google Scholar 

  102. Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J Cell Biol 162, 113–124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin, T. F. PI(4,5)P2 regulation of surface membrane traffic. Curr. Opin. Cell. Biol. 13, 493–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Wenk, M. R. & De Camilli, P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: Insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Paleotti, O. et al. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 280, 21661–21666 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Tanabe, K. et al. A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Mol. Biol. Cell 16, 1617–1628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Altschuler, Y. et al. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell. Biol. 147, 7–12 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hyman, T., Shmuel, M. & Altschuler, Y. Actin is required for endocytosis at the apical surface of MDCK cells where ARF6 and clathrin regulate the actin cytoskeleton. Mol. Biol. Cell. 17, 427–437 (2005).

    Article  PubMed  Google Scholar 

  109. Palacios, F., Price, L., Schweitzer, J., Collard, J. G. & D'Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 20, 4973–4986 (2001). References 109 and 110 show that the ARF6-GTPase cycle regulates the trafficking of E-cadherin along the endocytic pathway and the formation of membrane ruffles. References 109 and 147 show that ARF6 activation occurs downstream of HGF signalling to promote epithelial cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Palacios, F., Schweitzer, J. K., Boshans, R. L. & D'Souza-Schorey, C. ARF6–GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nature Cell Biol. 4, 929–936 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Krishnan, K. S. et al. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30, 197–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Claing, A. et al. β-arrestin-mediated ADP-ribosylation factor 6 activation and β2-adrenergic receptor endocytosis. J. Biol. Chem. 276, 42509–42513 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Mukherjee, S. et al. The ADP ribosylation factor nucleotide exchange factor ARNO promotes β-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. Proc. Natl Acad. Sci. USA 97, 5901–5906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ikeda, S. et al. Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 96, 467–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Xu, L. et al. Elevated phospholipase D activity in H-Ras- but not K-Ras-transformed cells by the synergistic action of RalA and ARF6. Mol. Cell. Biol. 23, 645–654 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Donaldson, J. G. Multiple roles for Arf6: Sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573–41576 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Blagoveshchenskaya, A. D., Thomas, L., Feliciangeli, S. F., Hung, C. H. & Thomas, G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111, 853–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Naslavsky, N., Weigert, R. & Donaldson, J. G. Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol. Biol. Cell 14, 417–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T. & Donaldson, J. G. Phosphatidylinositol 4, 5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154, 1007–1017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Arnaoutova, I., Jackson, C. L., Al-Awar, O. S., Donaldson, J. G. & Loh, Y. P. Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol. Biol. Cell 14, 4448–44457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Houndolo, T., Boulay, P. -L. & Claing, A. G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J. Biol. Chem. 280, 5598–5604 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell. Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  123. D'Souza-Schorey, C. et al. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol. 140, 603–616 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Franco, M. et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 18, 1480–1491 (1999). Cloning and characterization of the first member of the EFA6 family of ARF6 GEFS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Padron, D., Tall, R. D. & Roth, M. G. PLD2 is required for efficient endocytic recycling of transferrin receptors. Mol. Biol. Cell 17, 598–606 (2005).

    Article  PubMed  Google Scholar 

  126. Mayor, S., Presley, J. & Maxfield, F. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. Radhakrishna, H. & Donaldson, J. G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol. 139, 49–61 (1997). Shows that ARF6 regulates the recycling of plasma-membrane proteins that lack AP-2 and clathrin-sorting signals through a unique endosomal trafficking pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Caplan, S. et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 21, 2557–2567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Weigert, R., Yeung, A. C., Li, J. & Donaldson, J. G. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol. Biol. Cell. 15, 3758–3770 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jovanovic, O. A., Brown, F. D. & Donaldson, J. G. An effector domain mutant of Arf6 implicates phospholipase D in endosomal membrane recycling. Mol. Biol. Cell 17, 327–335 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Martinu, L. et al. The TBC (Tre-2/Bub2/Cdc16) domain protein TRE17 regulates plasma membrane-endosomal trafficking through activation of Arf6. Mol. Cell. Biol. 24, 9752–9762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Powelka, A. M. et al. Stimulation-dependent recycling of integrin β1 regulated by ARF6 and Rab11. Traffic 5, 20–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Aikawa, Y. & Martin, T. F. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4, 5)bisphosphate required for regulated exocytosis. J. Cell Biol. 162, 647–659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Prigent, M. et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163, 1111–1121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jackson, T. R. et al. ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J. Cell Biol. 151, 627–638 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dai, J. et al. ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev. Cell 7, 771–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Li, J. et al. Phosphorylation of ACAP1 by Akt regulates the stimulation-dependent recycling of integrin β1 to control cell migration. Dev. Cell 9, 663–673 (2005). Shows that the ARF6 GAP ACAP1 regulates the endosomal recycling of β1 integrin. In contrast to its effect on transferrin receptor recycling (Ref. 136), the role of ACAP1 in β1 integrin recycling requires its phosphorylation by AKT/PKB which is regulated by a canonical signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  138. Caumont, A. S. et al. Identification of a plasma membrane-associated guanine nucleotide exchange factor for ARF6 in chromaffin cells. Possible role in the regulated exocytotic pathway. J. Biol. Chem. 275, 15637–15644 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Vitale, N. et al. The small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. J. Biol. Chem. 280, 29921–29928 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Liu, L. et al. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol. Biol. Cell 16, 4463–4472 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Burgoyne, R. D. & Morgan, A. Secretory granule exocytosis. Physiol. Rev. 83, 581–632 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Radhakrishna, H., Klausner, R. D. & Donaldson, J. G. Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134, 935–947 (1996). Showed that ARF6 activation at the cell surface is accompanied by the formation of actin-rich membrane protrusions.

    Article  CAS  PubMed  Google Scholar 

  143. D'Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D. & Van Aelst, L. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445–5454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schafer, D. A., D'Souza-Schorey, C. & Cooper, J. A. Actin assembly at membranes controlled by ARF6. Traffic 1, 896–907 (2000).

    Article  Google Scholar 

  145. Albertinazzi, C., Za, L., Paris, S. & de Curtis, I. ADP-ribosylation factor 6 and a functional PIX–p95-APP1 complex are required for Rac1B-mediated neurite outgrowth. Mol. Biol. Cell 14, 1295–307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hernandez-Deviez, D. J., Roth, M. G., Casanova, J. E. & Wilson, J. M. ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase α. Mol. Biol. Cell. 15, 111–120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Santy, L. C. & Casanova, J. E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 154, 599–610 (2001). Showed that ARF6 activation by ARNO stimulates two distinct signalling pathways; one that results in Rac activation, and a second one that leads to changes in membrane phospholipid composition. Both pathways were shown to be required for cell motility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Riley, K. N., Maldonado, A. E., Tellier, P., D'Souza-Schorey, C. & Herman, I. M. βcap73-ARF6 interactions modulate cell shape and motility after injury in vitro. Mol. Biol. Cell 14, 4155–4161 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, Q., Cox, D., Tseng, C. C., Donaldson, J. G. & Greenberg, S. A requirement for ARF6 in Fcγ receptor-mediated phagocytosis in macrophages. J. Biol Chem. 273, 19977–19981 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Niedergang, F., Colucci-Guyon, E., Dubois, T., Raposo, G. & Chavrier, P. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J. Cell Biol. 161, 1143–1150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wong, K. W. & Isberg, R. R. Arf6 and phosphoinositol-4-phosphate-5-kinase activities permit bypass of the Rac1 requirement for β1 integrin-mediated bacterial uptake. J. Exp. Med. 198, 603–614 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Balana, M. E. et al. ARF6 GTPase controls bacterial invasion by actin remodelling. J. Cell. Sci. 188, 2201–2210 (2005).

  153. Radhakrishna, H., Al-Awar, O., Khachikian, Z. & Donaldson, J. G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell. Sci. 112, 855–866 (1999).

    CAS  PubMed  Google Scholar 

  154. Boshans, R. L., Szanto, S., van Aelst, L. & D'Souza-Schorey, C. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell. Biol. 20, 3685–3694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Santy, L. C., Ravichandran, K. S. & Casanova, J. E. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr. Biol. 15, 1749–1754 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Peters, P. J. et al. Arfaptin 2 regulates the aggregation of mutant huntingtin protein. Nature Cell. Biol. 4, 240–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Rangone, H. et al. Phosphorylation of arfaptin 2 at Ser260 by Akt Inhibits PolyQ-huntingtin-induced toxicity by rescuing proteasome impairment. J. Biol Chem. 280, 22021–22028 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Doye, A. et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Palacios, F. & D'Souza-Schorey, C. Modulation of Rac1 and ARF6 activation during epithelial cell scattering. J. Biol Chem. 278, 17395–17400 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Otsuki, Y. et al. Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc. Natl Acad. Sci. USA 98, 4385–4390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hilpela, P., Vartiainen, M. K. & Lappalainen, P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr. Opin. Microbiol. Immunol. 282, 117–163 (2004).

    CAS  Google Scholar 

  163. Niedergang, F. & Chavrier, P. Signaling and membrane dynamics during phagocytosis: many roads lead to the phagos(R)ome. Curr. Opin. Cell. Biol. 16, 422–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Uchida, H., Kondo, A., Yoshimura, Y., Mazaki, Y. & Sabe, H. PAG3/Papα/KIAA0400, a GTPase-activating protein for ADP-ribosylation factor (ARF), regulates ARF6 in Fcγ receptor-mediated phagocytosis of macrophages. J. Exp. Med. 193, 955–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, E. H., Pryce, B. A., Tzeng, J. A., Gonzalez, G. A. & Olson, E. N. Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114, 751–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. D'Souza-Schorey, C. Disassembling adherens junctions: breaking up is hard to do. Trends Cell. Biol. 15, 19–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Zimmermann, P. et al. Syndecan recyling is controlled by syntenin–PIP2 interaction and Arf6. Dev. Cell 9, 377–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Buccione, R., Orth, J. D. & McNiven, M. A. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nature Rev. Mol. Cell. Biol. 5, 647–557 (2004).

    Article  CAS  Google Scholar 

  169. Tague, S. E., Muralidharan, V. & D'Souza-Schorey, C. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK–ERK signaling pathway. Proc. Natl Acad. Sci. USA 101, 9671–9676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hashimoto, S. et al. Requirement for Arf6 in breast cancer invasive activities. Proc. Natl Acad. Sci. USA 101, 6647–6652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schweitzer, J. K. & D'Souza-Schorey, C. Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J. Biol. Chem. 277, 27210–27216 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Schweitzer, J. K. & D'Souza-Schorey, C. A requirement for ARF6 during the completion of cytokinesis. Exp. Cell. Res. 311, 74–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Schweitzer, J. K., Burke, E. E., Goodson, H. V. & D'Souza-Schorey, C. Endocytosis resumes during late mitosis and is required for cytokinesis. J. Biol. Chem. 280, 41628–41635 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Fielding, A. B. et al. Rab11-FIP3 and FIP4 interact with Arf6 and the Exocyst to control membrane traffic in cytokinesis. EMBO J. 24, 3389–3399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Pelham, H. R. & Rothman, J. E. The debate about transport in the Golgi — two sides of the same coin? Cell 102, 713–719 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Owen, D. J., Collins, B. M. & Evans, P. R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell. Dev. Biol. 20, 153–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep. 3, 1035–1041 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Morinaga, N., Tsai, S. C., Moss, J. & Vaughan, M. Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc. Natl Acad. Sci. USA 93, 12856–12860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Saeki, N., Tokuo, H. & Ikebe, M. BIG1 is a binding partner of myosin IXb and regulates its Rho-GTPase activating protein activity. J. Biol. Chem. 280, 10128–10134 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Padilla, P. I. et al. Interaction of FK506-binding protein 13 with brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1): effects of FK506. Proc. Natl Acad. Sci. USA 100, 2322–2327 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, H., Adamik, R., Pacheco-Rodriguez, G., Moss, J. & Vaughan, M. Protein kinase A-anchoring (AKAP) domains in brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2). Proc. Natl. Acad. Sci. USA 100, 1627–1632 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xu, K. -F. et al. Interaction of BIG2, a brefeldin A-inhibited guanine nucleotide-exchange protein, with exocyst protein Exo70. Proc. Natl Acad. Sci USA 102, 2784–2789 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kolanus, W. et al. αL β2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86, 233–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  185. Pacheco-Rodriguez, G., Meacci, E., Vitale, N., Moss, J. & Vaughan, M. Guanine nucleotide exchange on ADP-ribosylation factors catalyzed by cytohesin-1 and its Sec7 domain. J. Biol. Chem. 273, 26543–265438 (1998).

    Article  CAS  PubMed  Google Scholar 

  186. Ashery, U., Koch, H., Scheuss, V., Brose, N. & Rettig, J. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7–1. Proc. Natl Acad. Sci. USA 96, 1094–1099 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Schurmann, A. et al. The ADP-ribosylation factor (ARF)-related GTPase ARF-related protein binds to the ARF-specific guanine nucleotide exchange factor cytohesin and inhibits the ARF-dependent activation of phospholipase D. J. Biol. Chem. 274, 9744–9751 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Vitale, N. et al. Specific Functional Interaction of Human Cytohesin-1 and ADP-ribosylation Factor Domain Protein (ARD1). J. Biol. Chem. 275, 21331–21339 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Mansour, M., Lee, S. Y. & Pohajdak, B. The N-terminal coiled coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with the scaffolding protein CASP. J. Biol. Chem. 277, 32302–32309 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Chardin, P. et al. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481–484 (1996). Cloning and characterization of the first member of the ARNO family of ARF GEFs. The study also identified the Sec7 catalytic domain in ARNO, which is common in all ARF GEFs and is essential for catalytic activity.

    Article  CAS  PubMed  Google Scholar 

  191. Frank, S., Upender, S., Hansen, S. H. & Casanova, J. E. ARNO is a guanine nucleotide exchange factor for ADP-ribosylation factor 6. J. Biol. Chem. 273, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  192. Frank, S. R., Hatfield, J. C. & Casanova, J. E. Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol. Biol. Cell. 9, 3133–3146 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kitano, J. et al. Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J. Neurosci. 22, 1280–1289 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hernandez-Deviez, D. J., Casanova, J. E. & Wilson, J. M. Regulation of dendritic development by the ARF exchange factor ARNO. Nature Neurosci. 5, 623–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Venkateswarlu, K. Interaction protein for cytohesin exchange factors 1 (IPCEF1) binds cytohesin 2 and modifies its activity. J. Biol. Chem. 278, 43460–43469 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Gsandtner, I. et al. Heterotrimeric G protein-independent signaling of a G protein-coupled receptor. Direct binding of ARNO–cytohesin-2 to the carboxyl terminus of the A2A adenosine receptor is necessary for sustained activation of the ERK–MAP kinase pathway. J. Biol. Chem. 280, 31898–31905 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nature Cell Biol. 8, 124–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Franco, M. et al. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function. Proc. Natl Acad. Sci. USA 95, 9926–9931 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Langille, S. E. et al. ADP-ribosylation factor 6 as a target of guanine nucleotide exchange factor GRP1. J. Biol. Chem. 274, 27099–27104 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Nevrivy, D. J. et al. Interaction of grasp, a protein encoded by a novel retinoic acid-induced gene, with members of the cytohesin family of guanine nucleotide exchange factors. J. Biol. Chem. 275, 16827–16836 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Klarlund, J. K. et al. Signaling complexes of the ferm domain-containing protein GRSP1 bound to ARF exchange factor GRP1. J. Biol. Chem. 276, 40065–40070 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Poirier, M. -B. et al. General receptor for phosphoinositides 1, a novel repressor of thyroid hormone receptor action that prevents deoxyribonucleic acid binding. Mol. Endocrinol. 19, 1991–2005 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Ogasawara, M. et al. Similarities in function and gene structure of cytohesin-4 and cytohesin-1, guanine nucleotide-exchange proteins for ADP-ribosylation factors. J. Biol. Chem. 275, 3221–3230 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Macia, E., Chabre, M. & Franco, M. Specificities for the small G proteins ARF1 and ARF6 of the guanine nucleotide exchange factors ARNO and EFA6. J. Biol. Chem. 276, 24925–24930 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Decressac, S. et al. ARF6-dependent interaction of the TWIK1 K+ channel with EFA6, a GDP–GTP exchange factor for ARF6. EMBO Rep. 5, 1171–1175 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Derrien, V. et al. A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. J. Cell Sci. 115, 2867–2879 (2002).

    CAS  PubMed  Google Scholar 

  207. Matsuya, S. et al. Cellular and subcellular localization of EFA6C, a third member of the EFA6 family, in adult mouse Purkinje cells. J. Neurochem. 93, 674–683 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Someya, A. et al. ARF-GEP(100), a guanine nucleotide-exchange protein for ADP-ribosylation factor 6. Proc. Natl Acad. Sci. USA 98, 2413–2418 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dunphy, J. L. et al. The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of β1 integrins. Curr. Biol. 16, 315–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of our laboratories for many helpful discussions and comments on the manuscript. We apologize to investigators whose work is not cited or indirectly cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Philippe Chavrier's homepage

Crislyn D'Souza-Schorey's homepage

Glossary

GTPase-activating protein

A protein that promotes (up to 1000-fold) low intrinsic GTPase activity of GTP-binding proteins.

Guanine nucleotide-exchange factor

A protein that facilitates the exchange of bound GDP for GTP on a GTP-binding protein.

Switch regions

Two regions (Switch-I and -II) that undergo extensive conformational changes from the GDP- to the GTP-bound form of small GTP-binding proteins. In the GTP-bound conformation the switch regions mediate binding to the effector proteins.

Clathrin

A large protein that polymerizes into a triskelion that consists of three heavy chains and three light chains. Triskelions assemble into polyhedral lattices to form clathrin coats.

Actin

An 42-kDa globular protein that polymerizes into filaments. Actin filaments organize to form the actin-cytoskeleton network. The actin cytoskeleton is an important determinant of cell shape and is rapidly remodelled during cellular processes such as cell migration and cell division.

Phagocytosis

A receptor-mediated and actin-based process that allows the internalization and clearance of particulate material (> 0.5 μm) by specialized cell types such as macrophages, dendritic cells and neutrophils.

Coat protein complex I

A seven-subunit complex that consists of α-,β-,β′-, γ-, δ-, ε- and ζ-COP, which is also called coatomer. This coat complex functions in anterograde transport within the Golgi and in retrograde transport from the Golgi to the endoplasmic reticulum.

Endosome

A membrane transport vesicle that is formed after molecules are internalized by endocytosis.

Sec7 domain

A 200-amino-acid catalytic domain that was initially identified in the yeast protein Sec7 and is conserved in all ARF GEFs.

Brefeldin A

(BFA). A fungal metabolite that causes a rapid dissociation of ARF1, COPI and clathrin-coat adaptor proteins from Golgi membranes. BFA prevents completion of the nucleotide exchange reaction of Sec7-domain-containing GEFs through a non-competitive mechanism in which the drug traps the Sec7 domain together with GDP-bound ARF proteins in an abortive complex.

SNARE

Soluble N-ethylmaleimide-sensitive factor attachment-protein receptor. A family of membrane-tethered coiled-coil proteins that regulate fusion reactions and dictate specificity in the vacuolar system. They can be divided into vesicle-SNAREs and target-SNAREs on the basis of their localization, or into Q-SNAREs and R-SNAREs on the basis of a highly conserved amino acid.

KDEL

A C-terminal motif of Lys-Asp-Glu-Leu (KDEL) on certain soluble endoplasmic reticulum (ER) proteins that functions as a recognition motif for the KDEL receptor. The KDEL receptor mediates the retrieval of KDEL proteins that have leaked to the Golgi complex, back to the ER.

Phospholipase D

(PLD). An enzyme that catalyses the hydrolysis of the phosphodiester bond of phosphatidyl choline to generate phosphatidic acid (PA) and free choline. PA has signalling properties. In mammals, there are two PLD isoforms, PLD1 and PLD2, both of which are subject to complex regulation by lipid cofactors, protein kinases and GTP-binding proteins of the ARF and Rho subfamilies.

Endocytosis

The internalization of molecules into the cell from the extracellular environment.

Caveolae

Specialized membrane invaginations that form from lipid rafts and contain high amounts of cholesterol and sphingolipids. They are thought to compartmentalize signalling molecules and also facilitate non-clathrin-mediated endocytosis.

Cytokinesis

Division of the cell cytoplasm. Cytokinesis completes the cell cycle and creates membrane barriers between two daughter cells, each with a complete array of chromosomes and intracellular organelles.

Proteasome

A cytoplasmic enzyme complex that degrades cytosolic and transmembrane proteins that have been marked for destruction by ubiquitin tagging or by some other means.

Rho family GTPases

A subfamily of small (21 kDa) GTP-binding proteins that are related to Ras and that regulate the cytoskeleton.

Adherens junctions

Epithelial cell–cell-type junction complex that contains E-cadherin and the catenin-family proteins. The cytoplasmic tail is coupled to the actin cytoskeleton.

Invadopodia

Actin-rich membrane protrusions that are formed at the adherent cell surface of migrating cells as they invade the extracellular matrix. Invadopodia recruit various enzymes such as metalloproteinases and serine proteases to degrade matrix proteins and form the invasive front of the cell. Invadopodia are enriched in integrins and associated signalling proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Souza-Schorey, C., Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7, 347–358 (2006). https://doi.org/10.1038/nrm1910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing