Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The touchscreen operant platform for assessing executive function in rats and mice

Abstract

This protocol details a subset of assays developed within the touchscreen platform to measure various aspects of executive function in rodents. Three main procedures are included: extinction, measuring the rate and extent of curtailing a response that was previously, but is no longer, associated with reward; reversal learning, measuring the rate and extent of switching a response toward a visual stimulus that was previously not, but has become, associated with reward (and away from a visual stimulus that was previously, but is no longer, rewarded); and the 5-choice serial reaction time (5-CSRT) task, gauging the ability to selectively detect and appropriately respond to briefly presented, spatially unpredictable visual stimuli. These protocols were designed to assess both complementary and overlapping constructs including selective and divided visual attention, inhibitory control, flexibility, impulsivity and compulsivity. The procedures comprise part of a wider touchscreen test battery assessing cognition in rodents with high potential for translation to human studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart overview of pretraining stages 2–5.
Figure 2: Extinction task.
Figure 3: Reversal learning task.
Figure 4: 5-CSRT task.
Figure 5: Annotated photographs of a Campden Instruments rat touchscreen chamber.

Similar content being viewed by others

References

  1. Jurado, M.B. & Rosselli, M. The elusive nature of executive functions: a review of our current understanding. Neuropsychol. Rev. 17, 213–233 (2007).

    Article  PubMed  Google Scholar 

  2. Diamond, A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013).

    Article  PubMed  Google Scholar 

  3. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex 'Frontal Lobe' tasks: a latent variable analysis. Cognit. Psychol. 41, 49–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Robbins, T.W. & Arnsten, A.F.T. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci. 32, 267–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mar, A.C. & Dalley, J.W. Cognition: attention and impulsivity. In Encycl. Behav. Neurosci. (eds. Koob, G.F., Le Moal, M. & Thompson, R.F.) 1, 262–271 (Academic Press, 2010).

    Article  Google Scholar 

  6. Roca, M. et al. Executive function and fluid intelligence after frontal lobe lesions. Brain J. Neurol. 133, 234–247 (2010).

    Article  Google Scholar 

  7. Elliott, R. Executive functions and their disorders. Br. Med. Bull. 65, 49–59 (2003).

    Article  PubMed  Google Scholar 

  8. Holmes, A. & Wellman, C.L. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci. Biobehav. Rev. 33, 773–783 (2009).

    Article  PubMed  Google Scholar 

  9. Chudasama, Y. Animal models of prefrontal-executive function. Behav. Neurosci. 125, 327–343 (2011).

    Article  PubMed  Google Scholar 

  10. Robbins, T.W. Dissociating executive functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 1463–1470; discussion 1470–1471 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Stuss, D.T. & Alexander, M.P. Is there a dysexecutive syndrome? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 901–915 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Markou, A., Chiamulera, C., Geyer, M.A., Tricklebank, M. & Steckler, T. Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34, 74–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Chadman, K.K., Yang, M. & Crawley, J.N. Criteria for validating mouse models of psychiatric diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 1–11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keeler, J.F. & Robbins, T.W. Translating cognition from animals to humans. Biochem. Pharmacol. 81, 1356–1366 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Homberg, J.R. Measuring behaviour in rodents: towards translational neuropsychiatric research. Behav. Brain Res. 236, 295–306 (2013).

    Article  PubMed  Google Scholar 

  17. Berg, E.A. A simple objective technique for measuring flexibility in thinking. J. Gen. Psychol. 39, 15–22 (1948).

    Article  CAS  PubMed  Google Scholar 

  18. Shallice, T. Specific impairments of planning. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 298, 199–209 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Stroop, R.J. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  20. Owen, A.M., Downes, J.J., Sahakian, B.J., Polkey, C.E. & Robbins, T.W. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28, 1021–1034 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Rosvold, H. et al. A continuous performance test of brain damage. J. Consult. Psychol. 20, 343–350 (1956).

    Article  PubMed  Google Scholar 

  22. Roberts, A.C., Robbins, T.W. & Everitt, B.J. The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q. J. Exp. Psychol. B 40, 321–341 (1988).

    CAS  PubMed  Google Scholar 

  23. Birrell, J.M. & Brown, V.J. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20, 4320–4324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olton, D.S. & Samuelson, R.J. Remembrance of places passed: spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process. 2, 97–116 (1976).

    Article  Google Scholar 

  25. Krechevsky, I. Antagonistic visual discrimination habits in the white rat. J. Comp. Psychol. 14, 263–277 (1932).

    Article  Google Scholar 

  26. Carli, M., Robbins, T.W., Evenden, J.L. & Everitt, B.J. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav. Brain Res. 9, 361–380 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Bussey, T.J., Muir, J.L. & Robbins, T.W. A novel automated touchscreen procedure for assessing learning in the rat using computer graphic stimuli. Neurosci. Res. Commun. 15, 103–110 (1994).

    Google Scholar 

  28. Bussey, T.J. et al. The touchscreen cognitive testing method for rodents: How to get the best out of your rat. Learn. Mem. 15, 516–523 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bussey, T.J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Horner, A.E. et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nat. Protoc. 8, 1961–1984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pavlov, I.P. Conditioned Reflexes (Oxford University Press, 1927).

  32. Bouton, M.E. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol. Psychiatry 52, 976–986 (2002).

    Article  PubMed  Google Scholar 

  33. Myers, K.M. & Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Morgan, M.A., Romanski, L.M. & LeDoux, J.E. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci. Lett. 163, 109–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Milad, M.R. & Quirk, G.J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quirk, G.J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008).

    Article  PubMed  Google Scholar 

  37. Peters, J., Kalivas, P.W. & Quirk, G.J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem. 16, 279–288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Robbins, T.W., Gillan, C.M., Smith, D.G., de Wit, S. & Ersche, K.D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81–91 (2012).

    Article  PubMed  Google Scholar 

  39. Brigman, J.L. et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn. Mem. 15, 50–54 (2008).

    Article  PubMed  Google Scholar 

  40. Karlsson, R.-M. et al. Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34, 1578–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Barkus, C. et al. Do GluA1-knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62, 1263–1272 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Romberg, C., Horner, A.E., Bussey, T.J. & Saksida, L.M. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol. Aging 34, 731–744 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hefner, K. et al. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J. Neurosci. 28, 8074–8085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lederle, L. et al. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains. PloS ONE 6, e15536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer, A.C. et al. Genetics of novelty seeking, amphetamine self-administration and reinstatement using inbred rats. Genes Brain Behav. 9, 790–798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lattal, K.M. & Lattal, K.A. Facets of Pavlovian and operant extinction. Behav. Processes 90, 1–8 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bouton, M.E. Context and behavioral processes in extinction. Learn. Mem. 11, 485–494 (2004).

    Article  PubMed  Google Scholar 

  49. Leeson, V.C. et al. Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol. Psychiatry 66, 586–593 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cools, R., Barker, R.A., Sahakian, B.J. & Robbins, T.W. Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb. Cortex 11, 1136–1143 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Remijnse, P.L. et al. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch. Gen. Psychiatry 63, 1225–1236 (2006).

    Article  PubMed  Google Scholar 

  52. Dias, R., Robbins, T.W. & Roberts, A.C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Ghods-Sharifi, S., Haluk, D.M. & Floresco, S.B. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol. Learn. Mem. 89, 567–573 (2008).

    Article  PubMed  Google Scholar 

  54. Mar, A.C., Walker, A.L.J., Theobald, D.E., Eagle, D.M. & Robbins, T.W. Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. J. Neurosci. 31, 6398–6404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rolls, E.T. The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).

    Article  PubMed  Google Scholar 

  56. Riceberg, J.S. & Shapiro, M.L. Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior. J. Neurosci. 32, 16402–16409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schoenbaum, G., Nugent, S.L., Saddoris, M.P. & Setlow, B. Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13, 885–890 (2002).

    Article  PubMed  Google Scholar 

  58. Walton, M.E., Behrens, T.E.J., Buckley, M.J., Rudebeck, P.H. & Rushworth, M.F.S. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rogers, R.D., Andrews, T.C., Grasby, P.M., Brooks, D.J. & Robbins, T.W. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J. Cogn. Neurosci. 12, 142–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Rogers, R.D. et al. Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology 146, 482–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Clarke, H.F., Walker, S.C., Dalley, J.W., Robbins, T.W. & Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb. Cortex 17, 18–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Bari, A. et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35, 1290–1301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cools, R., Lewis, S.J.G., Clark, L., Barker, R.A. & Robbins, T.W. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology 32, 180–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Clarke, H.F., Hill, G.J., Robbins, T.W. & Roberts, A.C. Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J. Neurosci. 31, 4290–4297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clatworthy, P.L. et al. Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J. Neurosci. 29, 4690–4696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chudasama, Y. & Robbins, T.W. Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Izquierdo, A. et al. Basolateral amygdala lesions facilitate reward choices after negative feedback in rats. J. Neurosci. 33, 4105–4109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Graybeal, C. et al. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat. Neurosci. 14, 1507–1509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bussey, T.J., Muir, J.L., Everitt, B.J. & Robbins, T.W. Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav. Neurosci. 111, 920–936 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Kosheleff, A.R., Rodriguez, D., O'Dell, S.J., Marshall, J.F. & Izquierdo, A. Comparison of single-dose and extended methamphetamine administration on reversal learning in rats. Psychopharmacology 224, 459–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Izquierdo, A. et al. Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav. Brain Res. 171, 181–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Brigman, J.L. et al. Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb. Cortex 20, 1955–1963 (2010).

    Article  PubMed  Google Scholar 

  73. Leonard, J.A. Five-choice serial reaction apparatus. Med. Res. Coun. Appl. Psychol. Res. Unit, 326 (1959).

  74. Humby, T., Laird, F.M., Davies, W. & Wilkinson, L.S. Visuospatial attentional functioning in mice: interactions between cholinergic manipulations and genotype. Eur. J. Neurosci. 11, 2813–2823 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Humby, T., Wilkinson, L. & Dawson, G. Assaying aspects of attention and impulse control in mice using the 5-choice serial reaction time task. Curr. Protoc. Neurosci. 8.5H.1–8.5H.15 (2005).

  76. Young, J.W. et al. Nicotine improves sustained attention in mice: evidence for involvement of the 7 nicotinic acetylcholine receptor. Neuropsychopharmacology 29, 891–900 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Patel, S., Stolerman, I.P., Asherson, P. & Sluyter, F. Attentional performance of C57BL/6 and DBA/2 mice in the 5-choice serial reaction time task. Behav. Brain Res. 170, 197–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lambourne, S.L. et al. Impairments in impulse control in mice transgenic for the human FTDP-17 V337M mutation are exacerbated by age. Hum. Mol. Genet. 16, 1708–1719 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Siegel, J.A., Benice, T.S., Van Meer, P., Park, B.S. & Raber, J. Acetylcholine receptor and behavioral deficits in mice lacking apolipoprotein E. Neurobiol. Aging 32, 75–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Yan, T.C. et al. Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day. PloS ONE 6, e17586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fletcher, P.J., Soko, A.D. & Higgins, G.A. Impulsive action in the 5-choice serial reaction time test in 5-HT2c receptor null mutant mice. Psychopharmacology 226, 561–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Oliver, Y.P., Ripley, T.L. & Stephens, D.N. Ethanol effects on impulsivity in two mouse strains: similarities to diazepam and ketamine. Psychopharmacology 204, 679–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Bari, A., Dalley, J.W. & Robbins, T.W. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat. Protoc. 3, 759–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Romberg, C., Mattson, M.P., Mughal, M.R., Bussey, T.J. & Saksida, L.M. Impaired attention in the 3xTgAD mouse model of Alzheimer's disease: rescue by donepezil (Aricept). J. Neurosci. 31, 3500–3507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bartko, S.J. et al. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61, 1366–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McTighe, S.M., Neal, S.J., Lin, Q., Hughes, Z.A. & Smith, D.G. The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PloS ONE 8, e62189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oomen, C.A. et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc. 8, 2006–2021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morton, A.J., Skillings, E., Bussey, T.J. & Saksida, L.M. Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat. Methods 3, 767 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Bouton, M.E., Winterbauer, N.E. & Todd, T.P. Relapse processes after the extinction of instrumental learning: renewal, resurgence, and reacquisition. Behav. Processes 90, 130–141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bouton, M.E. & King, D.A. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J. Exp. Psychol. Anim. Behav. Process. 9, 248–265 (1983).

    Article  CAS  PubMed  Google Scholar 

  91. Ji, J. & Maren, S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17, 749–758 (2007).

    Article  PubMed  Google Scholar 

  92. Talpos, J.C., Fletcher, A.C., Circelli, C., Tricklebank, M.D. & Dix, S.L. The pharmacological sensitivity of a touchscreen-based visual discrimination task in the rat using simple and perceptually challenging stimuli. Psychopharmacology 221, 437–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Mirza, N.R. & Stolerman, I.P. Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138, 266–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Hahn, B., Shoaib, M. & Stolerman, I.P. Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology 162, 129–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Frick, K.M. & Berger-Sweeney, J. Spatial reference memory and neocortical neurochemistry vary with the estrous cycle in C57BL/6 mice. Behav. Neurosci. 115, 229–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Meziane, H., Ouagazzal, A.-M., Aubert, L., Wietrzych, M. & Krezel, W. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies. Genes Brain Behav. 6, 192–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Clelland, C.D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cardinal, R.N. & Aitken, M.R.F. Whisker: a client-server high-performance multimedia research control system. Behav. Res. Methods 42, 1059–1071 (2010).

    Article  PubMed  Google Scholar 

  99. Clarke, H.F., Dalley, J.W., Crofts, H.S., Robbins, T.W. & Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. Science 304, 878–880 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Chudasama, Y., Bussey, T.J. & Muir, J.L. Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur. J. Neurosci. 14, 1009–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Clarke, H.F., Robbins, T.W. & Roberts, A.C. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28, 10972–10982 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dalley, J.W., Everitt, B.J. & Robbins, T.W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The protocols described here are those currently used in our laboratory and were written by current members of the group. However, many researchers have contributed to the development of touchscreen tasks and we would like to gratefully acknowledge their contribution. They include S. Bartko, J. Brigman, S. Forwood, C. Graybeal, A. Izquierdo, L. Lyon, A. Marti, K. McAllister, S. McTighe, J. Nithianantharajah, C. Romberg, J. Talpos and B. Winters. We also thank M. Hvoslef-Eide for her assistance in creating and modifying the mask schematics and flow charts. The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008, of which resources are composed of an European Federation of Pharmaceutical Industries and Associations in-kind contribution and financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013); from the Wellcome Trust/Medical Research Council (089703/Z/09/Z) and from Alzheimer's Research UK (ART/PG2006/5). A.E.H. receives funding from the European Union Seventh Framework Programme under grant agreement nos. 241995 (Project 'GENCODYS') and 242167 (Project 'SYNSYS'). J.A. was supported by the Swedish Academy of Pharmaceutical Sciences. A.E.H. was supported by the NIAAA Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript. A.C.M. coordinated this effort.

Corresponding author

Correspondence to Adam C Mar.

Ethics declarations

Competing interests

L.M.S. and T.J.B. consult for Campden Instruments, Ltd. A.E.H. is an employee of Synome, Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mar, A., Horner, A., Nilsson, S. et al. The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8, 1985–2005 (2013). https://doi.org/10.1038/nprot.2013.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.123

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing