Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Closed-loop optogenetic intervention in mice

Abstract

Optogenetic interventions offer novel ways of probing, in a temporally specific manner, the roles of specific cell types in neuronal network functions of awake, behaving animals. Despite the unique potential for temporally specific optogenetic intervention in disease states, a major hurdle in its broad application to unpredictable brain states in a laboratory setting is constructing a real-time responsive system. We recently created a closed-loop system for stopping spontaneous seizures in chronically epileptic mice by using optogenetic intervention. This system performs with a very high sensitivity and specificity, and the strategy is not only relevant to epilepsy but also can also be used to react to diverse brain states in real time, with optogenetic or other interventions. The protocol presented here is highly modular and requires variable amounts of time to perform. We describe the basic construction of a complete system, and we include our downloadable custom closed-loop detection software, which can be used for this purpose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generating implantable optical fibers.
Figure 2: Assembling optrodes for implantation.
Figure 3: Implanting the optical fiber and electrode headstage.
Figure 4: Equipment setup.
Figure 5: Summary of detection algorithms.
Figure 6: On-line seizure detection and fiber tract location.

Similar content being viewed by others

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  2. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. Published online; http:dx.doi.org/10.1038/ncomms2376 (2013).

  3. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  Google Scholar 

  4. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

  5. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  6. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  7. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  Google Scholar 

  8. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  9. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    Article  CAS  Google Scholar 

  10. Lee, J.H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  Google Scholar 

  11. Paz, J.T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    Article  CAS  Google Scholar 

  12. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  13. Tonnesen, J., Sorensen, A.T., Deisseroth, K., Lundberg, C. & Kokaia, M. Optogenetic control of epileptiform activity. Proc. Natl. Acad. Sci. USA 106, 12162–12167 (2009).

    Article  CAS  Google Scholar 

  14. Witten, I.B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010).

    Article  CAS  Google Scholar 

  15. Wykes, R.C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 161ra152 (2012).

    Article  Google Scholar 

  16. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  Google Scholar 

  17. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  Google Scholar 

  18. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  Google Scholar 

  19. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  Google Scholar 

  20. Witten, I.B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article  CAS  Google Scholar 

  21. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  Google Scholar 

  22. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  Google Scholar 

  23. Tamura, K. et al. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. J. Neurosci. Methods 211, 49–57 (2012).

    Article  CAS  Google Scholar 

  24. Cao H., Gu L., Mohanty, S.K. & Chiao, J.C. An Integrated μLED optrode for optogenetic stimulation and electrical recording. Biomed. Eng. IEEE Trans. 60, 225–229 (2013).

    Article  Google Scholar 

  25. Wang, J. et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9, 016001 (2012).

    Article  Google Scholar 

  26. Zhang, J. et al. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural Eng. 6, 055007 (2009).

    Article  Google Scholar 

  27. Abaya, T.V.F., Blair, S., Tathireddy, P., Rieth, L. & Solzbacher, F. A 3D glass optrode array for optical neural stimulation. Biomed. Opt. Express 3, 3087–3104 (2012).

    Article  CAS  Google Scholar 

  28. Wentz, C.T. et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8, 046021 (2011).

    Article  Google Scholar 

  29. Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2012).

    Article  CAS  Google Scholar 

  30. Bragin, A., Engel, J. Jr., Wilson, C.L., Vizentin, E. & Mathern, G.W. Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia 40, 1210–1221 (1999).

    Article  CAS  Google Scholar 

  31. Berenyi, A., Belluscio, M., Mao, D. & Buzsaki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735–737 (2012).

    Article  CAS  Google Scholar 

  32. White, A.M. et al. Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J. Neurosci. Methods 152, 255–266 (2006).

    Article  Google Scholar 

  33. Cardin, J.A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  Google Scholar 

  34. Kravitz, A.V., Owen, S.F. & Kreitzer, A.C. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res. 1511, 21–32 (2013).

    Article  CAS  Google Scholar 

  35. Synthetic Neurobiology Group, MIT Media Lab Very simple off-the-shelf laser and viral injector systems for in vivo optical neuromodulation. in Synthetic Neurobiology Memo 4. http://www.syntheticneurobiology.org/protocols/protocoldetail/35/9 (2011).

  36. Sparta, D.R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012).

    Article  CAS  Google Scholar 

  37. Buzsaki, G., Anastassiou, C.A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  CAS  Google Scholar 

  38. Weiergräber, M., Henry, M., Hescheler, J., Smyth, N. & Schneider, T. Electrocorticographic and deep intracerebral EEG recording in mice using a telemetry system. Brain Res. Protoc. 14, 154–164 (2005).

    Article  Google Scholar 

  39. Martín del Campo, C., Velázquez, J.L.P. & Freire, M.A.C. EEG recording in rodents, with a focus on epilepsy. Curr. Protoc. Neurosci. 49, 6.24.1–6.24.24 (2009).

    Article  Google Scholar 

  40. Pritchett-Corning, K.R., Luo, Y., Mulder, G.B. & White, W.J. Principles of rodent surgery for the new surgeon. J. Vis. Exp. 47, e256; http://dx.doi.org/10.3791/2586 (2011).

    Google Scholar 

  41. Nakano, H., Saito, K. & Suzuki, K. Chronic implantation technique for monopolar EEG monitoring of epileptic seizures in mice. Brain Res. Bull. 35, 261–268 (1994).

    Article  CAS  Google Scholar 

  42. Royer, S. et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 2279–2291 (2010).

    Article  Google Scholar 

  43. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  44. Kravitz, A.V. & Kreitzer, A.C. Optogenetic manipulation of neural circuitry in vivo. Curr. Opin. Neurobiol. 21, 433–439 (2011).

    Article  CAS  Google Scholar 

  45. Stuber, G.D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  Google Scholar 

  46. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  Google Scholar 

  47. Tsien, J.Z. et al. Subregion- and cell type–restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  Google Scholar 

  48. Zeng, H. & Madisen, L. Mouse transgenic approaches in optogenetics. Prog. Brain Res. 196, 193–213 (2012).

    Article  CAS  Google Scholar 

  49. Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    Article  CAS  Google Scholar 

  50. Franklin, K.B.J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates. (Academic Press, 1997).

Download references

Acknowledgements

We thank S. Olsen, H. Adesnik and M. Scanziani for sharing expertise in putting together components of an LED stimulation setup, and we thank J. Echegoyen for sharing his expertise in performing tethered EEG recordings. This work was supported by a US National Institutes of Health grant NS074702 (to I.S.), by the Epilepsy Foundation (to C.A.) and by the George E. Hewitt Foundation for Medical Research (to E.K.-M.).

Author information

Authors and Affiliations

Authors

Contributions

M.O. designed the custom MATLAB software, E.K.-M. and C.A. contributed equally and performed the experiments and C.A., E.K.-M., M.O. and I.S. designed the experiments and prepared the manuscript.

Corresponding author

Correspondence to Caren Armstrong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

On-line seizure detection and analysis software. (a) MCRInstaller (2011b).exe. The MATLAB runtime environment (2011b) which is necessary to run the custom software. This file should be run only once on every computer that will be using the custom MATLAB software prior to attempting to open them. (b) Soltesz_Recorder_v1.exe. A modified version of the custom MATLAB recording software used to achieve online seizure detection in Krook-Magnuson et al 2013 (Soltesz_Recorder_v1.exe), (c) Soltesz_Analyzer_v1.exe. A modified version of the custom MATLAB software for analyzing recorded files. (d) sample data.mat. A short segment of recorded data which can be opened and examined using the Analysis Software (Supplementary Data 1c) for users wishing to gain practice with tuning a sample data set. (e) readme.txt. This allows the user to quickly get started installing and using the software files. (ZIP 426275 kb)

Supplementary Manual

On-line seizure detection and analysis software user guide. Also contained in the zipped Supplementary Data 1 file for reference, the User Guide contains information on each of the different functions available in the recorder and analyzer programs, as well as more detailed information about the calculations used for each parameter. Portions of this manual were modified from the Supplementary Material of Krook-Magnuson et al.2. (PDF 1975 kb)

Supplementary Table 1

Equipment and reagents. This file contains the ordering information for the equipment and supplies utilized in the protocol and in Krook-Magnuson et al.2. (PDF 2849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, C., Krook-Magnuson, E., Oijala, M. et al. Closed-loop optogenetic intervention in mice. Nat Protoc 8, 1475–1493 (2013). https://doi.org/10.1038/nprot.2013.080

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.080

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing