Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny

Abstract

This protocol describes methods of isolating skin-derived precursors (SKPs) from rodent and human skin, and for generating and enriching Schwann cells from rodent SKPs. SKPs are isolated as a population of non-adherent cells from the dermis that proliferate and self-renew as floating spheres in response to fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). Their differentiation into Schwann cells and subsequent enrichment of these differentiated progeny involves culturing SKPs as adherent cells in the absence of FGF2 and EGF, but in the presence of neuregulins, and then mechanically isolating the Schwann cell colonies using cloning cylinders. Methods for expanding and characterizing these Schwann cells are provided. Generation of primary SKPs takes approximately 2 weeks, while differentiation of Schwann cells requires an additional 4–6 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SKPs grown in FGF2 and EGF.
Figure 2: Morphology of SKP-derived Schwann cells.

Similar content being viewed by others

References

  1. Aguayo, A.J., Kasarjian, J., Skamene, E., Kongshavn, P. & Bray, G.M. Myelination of mouse axons by Schwann cells transplanted from normal and abnormal human nerves. Nature 268, 753–755 (1977).

    Article  CAS  Google Scholar 

  2. David, S. & Aguayo, A.J. Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. J. Neurocytol. 14, 1–12 (1985).

    Article  CAS  Google Scholar 

  3. Pearse, D.D. et al. Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? J. Neurotrauma. 21, 1223–1239 (2004).

    Article  Google Scholar 

  4. Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    Article  CAS  Google Scholar 

  5. Xu, X.M., Chen, A., Guenard, V., Kleitman, N. & Bunge, M.B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 26, 1–16 (1997).

    Article  CAS  Google Scholar 

  6. Xu, X.M., Zhang, S.X., Li, H., Aebischer, P. & Bunge, M.B. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci. 11, 1723–1740 (1999).

    Article  CAS  Google Scholar 

  7. Pinzon, A., Calancie, B., Oudega, M. & Noga, B.R. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J. Neurosci. Res. 64, 533–541 (2001).

    Article  CAS  Google Scholar 

  8. Paino, C.L. & Bunge, M.B. Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp. Neurol. 114, 254–257 (1991).

    Article  CAS  Google Scholar 

  9. Kocsis, J.D., Akiyama, Y., Lankford, K.L. & Radtke, C. Cell transplantation of peripheral-myelin-forming cells to repair the injured spinal cord. J. Rehabil. Res. Dev. 39, 287–298 (2002).

    PubMed  Google Scholar 

  10. Keirstead, H.S., Morgan, S.V., Wilby, M.J. & Fawcett, J.W. Enhanced axonal regeneration following combined demyelination plus Schwann cell transplantation therapy in the injured adult spinal cord. Exp. Neurol. 159, 225–236 (1999).

    Article  CAS  Google Scholar 

  11. Fouad, K. et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 25, 1169–1178 (2005).

    Article  CAS  Google Scholar 

  12. Barakat, D.J. et al. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. 14, 225–240 (2005).

    Article  CAS  Google Scholar 

  13. Li, R. Culture methods for selective growth of normal rat and human Schwann cells. Methods Cell Biol. 57, 167–186 (1998).

    Article  CAS  Google Scholar 

  14. Mason, P.W., Attema, B.L. & DeVries, G.H. Isolation and characterization of neonatal Schwann cells from cryopreserved rat sciatic nerves. J. Neurosci. Res. 31, 731–744 (1992).

    Article  CAS  Google Scholar 

  15. Oda, Y., Okada, Y., Katsuda, S., Ikeda, K. & Nakanishi, I. A simple method for the Schwann cell preparation from newborn rat sciatic nerves. J. Neurosci. Methods 28, 163–169 (1989).

    Article  CAS  Google Scholar 

  16. Peulve, P., Laquerriere, A., Paresy, M., Hemet, J. & Tadie, M. Establishment of adult rat Schwann cell cultures: effect of β-FGF, α-MSH, NGF, PDGF, and TGF-β on cell cycle. Exp. Cell Res. 214, 543–550 (1994).

    Article  CAS  Google Scholar 

  17. Vroemen, M. & Weidner, N. Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J. Neurosci. Methods 124, 135–143 (2003).

    Article  CAS  Google Scholar 

  18. Assouline, J.G., Bosch, E.P. & Lim, R. Purification of rat Schwann cells from cultures of peripheral nerve: an immunoselective method using surfaces coated with anti-immunoglobulin antibodies. Brain Res. 277, 389–392 (1983).

    Article  CAS  Google Scholar 

  19. Casella, G.T., Bunge, R.P. & Wood, P.M. Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia 17, 327–338 (1996).

    Article  CAS  Google Scholar 

  20. Kreider, B.Q. et al. Enrichment of Schwann cell cultures from neonatal rat sciatic nerve by differential adhesion. Brain Res. 207, 433–444 (1981).

    Article  CAS  Google Scholar 

  21. Moretto, G., Kim, S.U., Shin, D.H., Pleasure, D.E. & Rizzuro, N. Long-term cultures of human adult Schwann cells isolated from autopsy materials. Acta Neuropathol. (Berl) 64, 15–21 (1984).

    Article  CAS  Google Scholar 

  22. Scarpini, E., Kreider, B.Q., Lisak, R.P. & Pleasure, D.E. Establishment of Schwann cell cultures from adult rat peripheral nerves. Exp. Neurol. 102, 167–176 (1988).

    Article  CAS  Google Scholar 

  23. Morrissey, T.K., Kleitman, N. & Bunge, R.P. Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J. Neurosci. 11, 2433–2442 (1991).

    Article  CAS  Google Scholar 

  24. Rutkowski, J.L., Tennekoon, G.I. & McGillicuddy, J.E. Selective culture of mitotically active human Schwann cells from adult sural nerves. Ann. Neurol. 31, 580–586 (1992).

    Article  CAS  Google Scholar 

  25. Rutkowski, J.L., Kirk, C.J., Lerner, M.A. & Tennekoon, G.I. Purification and expansion of human Schwann cells in vitro. Nat. Med. 1, 80–83 (1995).

    Article  CAS  Google Scholar 

  26. Toma, J.G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  Google Scholar 

  27. Fernandes, K.J.L. et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 6, 1082–1093 (2004).

    Article  CAS  Google Scholar 

  28. Fernandes, K.J. et al. Analysis of the neurogenic potential of multipotent skin-derived precursors. Exp. Neurol. 201, 32–48 (2006).

    Article  Google Scholar 

  29. Toma, J.G., McKenzie, I.A., Bagli, D. & Miller, F.D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23, 727–737 (2005).

    Article  CAS  Google Scholar 

  30. Joannides, A. et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364, 172–178 (2004).

    Article  CAS  Google Scholar 

  31. McKenzie, I.A., Biernaskie, J., Toma, J.G., Midha, R. & Miller, F.D. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J. Neurosci. 26, 6651–6660 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freda D Miller.

Ethics declarations

Competing interests

Dr. Freda Miller is a consultant for Aggregate Therapeutics, a biotechnology company who has licensed patents covering SKPs technology from McGill University, who owns the technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biernaskie, J., McKenzie, I., Toma, J. et al. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc 1, 2803–2812 (2006). https://doi.org/10.1038/nprot.2006.422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.422

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing