Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling

Abstract

In humans, distinct processes within the hippocampus and rhinal cortex support declarative memory formation. But do these medial temporal lobe (MTL) substructures directly cooperate in encoding new memories? Phase synchronization of gamma-band electroencephalogram (EEG) oscillations (around 40 Hz) is a general mechanism of transiently connecting neural assemblies. We recorded depth-EEG from within the MTL of epilepsy patients performing a memorization task. Successful as opposed to unsuccessful memory formation was accompanied by an initial elevation of rhinal–hippocampal gamma synchronization followed by a later desynchronization, suggesting that effective declarative memory formation is accompanied by a direct and temporarily limited cooperation between both MTL substructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of MTL depth electrodes.
Figure 2: Changes of phase synchronization between rhinal cortex and hippocampus (%) relative to prestimulus baseline for subsequently recalled versus unrecalled words. Synchronization values were averaged over all analyzed gamma frequencies (32–48 Hz); mean and s.e.m. are plotted.
Figure 3: Differences of phase synchronization between rhinal cortex and hippocampus (%) relative to prestimulus baseline for subsequently recalled versus unrecalled words.
Figure 4: Distribution of phase differences between rhinal cortex and hippocampus in the gamma frequency range (32–48 Hz) for subsequently recalled versus unrecalled words.
Figure 5: Changes of EEG gamma power (%) averaged over all frequencies (32–48 Hz) relative to prestimulus baseline for subsequently recalled versus unrecalled words.

Similar content being viewed by others

References

  1. Scoville, W. B. & Millner, B. J. Loss of recent memory after bilateral hippocampal lesions. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  2. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).

    Article  CAS  Google Scholar 

  3. Gabrieli, J. D. E. Cognitive neuroscience of human memory. Annu. Rev. Neurosci. 49, 87–115 (1998).

    CAS  Google Scholar 

  4. Zola-Morgan, S. & Squire, L. R. Neuroanatomy of memory. Annu. Rev. Neurosci. 16, 547–563 (1993).

    Article  CAS  Google Scholar 

  5. Otten, L. J., Henson, R. N. A. & Rugg, M. D. Depth of processing effects on neural correlates of memory encoding. Brain 124, 399–412 (2001).

    Article  CAS  Google Scholar 

  6. Kirchhoff, B. A., Wagner, A. D., Maril, A. & Stern, C. E. Prefrontal-temporal circuitry for episodic and subsequent memory. J. Neurosci. 20, 6173–6180 (2000).

    Article  CAS  Google Scholar 

  7. Henke, K., Weber, B., Kneifel, S., Wieser, H. G. & Buck, A. Human hippocampus associates information in memory. Proc. Natl. Acad. Sci. USA 96, 5884–5889 (1999).

    Article  CAS  Google Scholar 

  8. Fernández, G., Brewer, J. B., Zhao, Z., Glover, G. H. & Gabrieli, J. D. Level of sustained entorhinal activity at study correlates with subsequent cued-recall performance: a functional magnetic resonance imaging study with high acquisition rate. Hippocampus 9, 35–44 (1999).

    Article  Google Scholar 

  9. Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998).

    Article  CAS  Google Scholar 

  10. Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    Article  CAS  Google Scholar 

  11. Fernández, G. et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 285, 1582–1585 (1999).

    Article  Google Scholar 

  12. Lavenex, P. & Amaral, D. G. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10, 420–430 (2000).

    Article  CAS  Google Scholar 

  13. Amaral, D. G. & Insausti, R. in The Human Nervous System (ed. Paxinos, G.) 711–755 (Academic, San Diego, 1990).

    Book  Google Scholar 

  14. Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H. & Lohman, A. H. M. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161–253 (1989).

    Article  CAS  Google Scholar 

  15. Brown, M. W. & Aggleton, J. P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61 (2001).

    Article  CAS  Google Scholar 

  16. Engel, A. K. & Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001).

    Article  Google Scholar 

  17. Varela, F. J., Lachaux, J.-P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2000).

    Article  Google Scholar 

  18. Sauvé, K. Gamma-band synchronous oscillations: recent evidence regarding their functional significance. Conscious. Cogn. 8, 213–224 (1999).

    Article  Google Scholar 

  19. Tallon-Baudry, C. & Bertrand, O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3, 151–162 (1999).

    Article  CAS  Google Scholar 

  20. Singer, W. Striving for coherence. Nature 397, 391–393 (1999).

    Article  CAS  Google Scholar 

  21. Rodriguez, E. et al. Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999).

    Article  CAS  Google Scholar 

  22. Miltner, W. H., Braun, C., Arnold, M., Witte, H. & Taub, E. Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436 (1999).

    Article  CAS  Google Scholar 

  23. Van Roost, D., Solymosi, L., Schramm, J., Van Oosterwyck, B. & Elger, C. E. Depth electrode implantation in the length axis of the hippocampus for the presurgical evaluation of medial temporal lobe epilepsy: a computed tomography-based stereotactic insertion technique and its accuracy. Neurosurgery 43, 819–826 (1998).

    Article  CAS  Google Scholar 

  24. Morris, H. H. & Luders, H. Electrodes. Electroencephalogr. Clin. Neurophysiol. Suppl. 37, 3–26 (1985).

    PubMed  Google Scholar 

  25. Paller, K. A., McCarthy, G., Roessler, E., Allison, T. & Wood, C. C. Potentials evoked in human and monkey medial temporal lobe during auditory and visual oddball paradigms. Electroencephalogr. Clin. Neurophysiol. 84, 269–279 (1992).

    Article  CAS  Google Scholar 

  26. Hermann, B. P., Seidenberg, M., Schoenfeld, J. & Davies, K. Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy. Arch. Neurol. 54, 369–376 (1997).

    Article  CAS  Google Scholar 

  27. Fernández, G. et al. Event-related potentials of verbal encoding into episodic memory: dissociation between the effects of subsequent memory performance and distinctiveness. Psychophysiology 35, 709–720 (1998).

    Article  Google Scholar 

  28. Elger, C. E. et al. Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 35, 657–667 (1997).

    Article  CAS  Google Scholar 

  29. Hirai, N., Uchida, S., Maehara, T., Okubo, Y. & Shimizu, H. Enhanced gamma (30–150 Hz) frequency in the human medial temporal lobe. Neuroscience 90, 1149–1155 (1999).

    Article  CAS  Google Scholar 

  30. Menon, V. et al. Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr. Clin. Neurophysiol. 98, 89–102 (1996).

    Article  CAS  Google Scholar 

  31. Bullock, T. H. et al. EEG coherence has structure in the millimetre domain: subdural and hippocampal recordings from epileptic patients. Electroencephalogr. Clin. Neurophysiol. 95, 161–177 (1995).

    Article  CAS  Google Scholar 

  32. McCarthy, G., Nobre, A. C., Bentin, S. & Spencer, D. D. Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

    Article  CAS  Google Scholar 

  33. Klee, M., & Rall, W. Computed potentials of cortically arranged populations of neurons. J. Neurophysiol. 40, 647–666 (1977).

    Article  CAS  Google Scholar 

  34. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).

    Article  CAS  Google Scholar 

  35. Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).

    Article  CAS  Google Scholar 

  36. Steinmetz, P. N. et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404, 187–190 (2000).

    Article  CAS  Google Scholar 

  37. Desmedt, J. E. & Tomberg, C. Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci. Lett. 168, 126–129 (1994).

    Article  CAS  Google Scholar 

  38. Müller, M. M., Gruber, T. & Keil, A. Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int. J. Psychophysiol. 38, 283–299 (2000).

    Article  Google Scholar 

  39. LaBerge, D. Attention, awareness, and the triangular circuit. Conscious. Cogn. 6, 149–181 (1997).

    Article  Google Scholar 

  40. Traub, R. D., Whittington, M. A., Buhl, E. H., Jefferys, J. G. & Faulkner, H. J. On the mechanism of the γ_β frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J. Neurosci. 19, 1088–1105 (1999).

    Article  CAS  Google Scholar 

  41. Whittington, M. A., Traub, R. D., Faulkner, H. J., Stanford, I. M. & Jefferys, J. G. Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc. Natl. Acad. Sci. USA 94, 12198–12203 (1997).

    Article  CAS  Google Scholar 

  42. Bliss, T. V. P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  43. Craik, F. I. M., Govoni, R., Naveh-Benjamin, M. & Anderson, N. D. The effects of divided attention on encoding and retrieval processes in human memory. J. Exp. Psychol. Gen. 125, 159–180 (1996).

    Article  CAS  Google Scholar 

  44. Buzsaki, G. The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92 (1996).

    Article  CAS  Google Scholar 

  45. Baayen, R. H., Piepenbrock, R. & van Rijn, H. CELEX Lexical Database (Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 1993).

    Google Scholar 

  46. Jackson, G. D. & Duncan, J. S. MRI Neuroanatomy (Churchill Livingstone, New York, 1996).

    Google Scholar 

  47. Daubechies, I. The wavelet transform, time-frequency localisation and signal analysis. IEEE Trans. Inform. Theory 36, 961–1005 (1990).

    Article  Google Scholar 

  48. Mardia, K. V. Probability and Mathematical Statistics: Statistics of Directional Data (Academic, London, 1972).

    Google Scholar 

  49. Huynh, H. & Feldt, L. S. Estimation of the box correction for degrees of freedom from sample data in the randomized plot and split plot designs. J. Educ. Stat. 1, 69–82 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG Fe479/4-1). We wish to thank H. Beck, W. Burr, A. Engel, C. Koch, M. Reuber and I. Tendolkar for comments on earlier drafts of the manuscript. We also thank H. Urbach for providing the MR images and I. Blümcke for providing the histopathological reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Fell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fell, J., Klaver, P., Lehnertz, K. et al. Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling. Nat Neurosci 4, 1259–1264 (2001). https://doi.org/10.1038/nn759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing