Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain

Abstract

During development of the mammalian telencephalon, cells migrate via diverse pathways to reach their final destinations. In the developing neocortex, projection neurons are generated from cells that migrate radially from the underlying ventricular zone. In contrast, subsets of cells that populate the ventral piriform cortex and olfactory bulb reach these sites by migrating long distances. Additionally, it has been recently established that cells migrate tangentially from the ventral ganglionic eminences to the developing cortex. These tangentially migrating cells are a significant source of cortical interneurons and possibly other cell types such as oligodendrocytes. Here we summarize the known routes of migration in the developing telencephalon, with a particular focus on tangential migration. We also review recent genetic and transplantation studies that have given greater insight into the understanding of these processes and the molecular cues that may guide these migrating cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic anatomy of the embryonic telencephalon.

Bob Crimi

Figure 2: Major routes of tangential migration.

Bob Crimi

Figure 3: Detailed overview of the known and hypothesized routes of tangential cell migration.

Bob Crimi

Similar content being viewed by others

References

  1. Fishell, G. Regionalization in the mammalian telencephalon. Curr. Opin. Neurobiol. 7, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Rubenstein, J. L. R., Shimamura, K., Martinez, S. & Puelles, L. Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci. 21, 445–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Smart, I. H. M. & Sturrock, R. R. in The Neostriatum (eds. Divac, I. & Oberg, R. G. E.) 127–146 (Pergamon, New York, 1979).

    Book  Google Scholar 

  4. Deacon, T. W., Pakzaban, P. & Isacson, O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 668, 211–219 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zeelenbaues (Barth, Leipzig, Germany, 1909).

    Google Scholar 

  6. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Angevine, J. B. & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  8. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 173–181 (1972).

    Article  Google Scholar 

  9. Hatten, M. E. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci. 13, 179–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, S. S. & Breen, S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 362, 638–640 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Price, J. & Thurlow, L. Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104, 473–482 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Misson, J. P, Austin, C. P., Takahashi, T., Cepko, C. L. & Caviness, V. S. Jr. The alignment of migrating neural crest cells in relation to the murine neopallial radial glial fiber system. Cereb. Cortex 1, 221–229 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Ware, M. L., Tavazoie, S. F., Reid, C. B. & Walsh, C. A. Coexistence of widespread clones and large radial clones in early embryonic ferret. Cereb. Cortex 9, 636–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. McCarthy, M., Turnbull, D. H., Walsh, C. A. & Fishell, G. Telencephalic neural progenitors appear to be regionally and glial restricted prior to the onset of neurogenesis. J. Neurosci. 21, 6772–6781 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hicks, S. P. & D'Amato, C. J. Cell migrations to the isocortex in the rat. Anat. Rec. 160, 619–634 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. Bayer, S. A. & Altman, J. in Neocortical Development (eds. Bayer, S. A. & Altman, J.) 116–127 (Raven, New York, 1991).

    Google Scholar 

  18. De Carlos, J. A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Misson, J. P., Edwards, M. A., Yamamoto, M. & Caviness V. S. Jr. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res. Dev. Brain Res. 44, 95–108 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Edwards, M. A., Yamamoto, M. & Caviness, V. S. Jr. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36, 121–144 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Misson, J. P., Austin, C. P., Takahashi, T., Cepko, C. L. & Caviness, V. S. Jr. The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb. Cortex 3, 221–229 (1991).

    Article  Google Scholar 

  22. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–458 (1969).

    Article  CAS  PubMed  Google Scholar 

  23. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Alvarez-Buylla, A. Mechanism of migration of olfactory bulb interneurons. Semin. Cell Dev. Biol. 8, 207–213 (1997).

    CAS  Google Scholar 

  26. Goldman, S. A. & Luskin, M. B. Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci. 21, 107–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lois, C., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Wichterle, H., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Rakic, P. & Sidman, R. L. Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwicklungsgesch. 129, 53–82 (1969).

    Article  CAS  PubMed  Google Scholar 

  30. Letinic, K. & Kostovic, I. Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J. Comp. Neurol. 384, 373–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Van Eden, C. G., Mrzljak, L., Voorn, P. & Uylings, H. B. Prenatal development of GABA-ergic neurons in the neocortex of the rat. J. Comp. Neurol. 289, 213–227 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. DeDiego, I., Smith-Fernandez, A. & Fairen, A. Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur. J. Neurosci. 6, 983–997 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Gotz, M. & Bolz, J. Differentiation of transmitter phenotypes in rat cerebral cortex. Eur. J. Neurosci. 6, 18–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Fishell, G., Mason, C. A. & Hatten, M. E. Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 15, 636–638 (1993).

    Article  Google Scholar 

  37. O'Rourke, N. A., Dailey, M. E., Smith, S. J. & McConnell, S. K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. O'Rourke, N. A. et al. Tangential migration of neurons in the developing cortex. Development 121, 2165–2176 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Parnavelas, J. G., Barfield, J. A., Franke, E. & Luskin, M. B. Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb. Cortex 1, 463–468 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Mione, M. C., Danevic, C., Boardman, P., Harris, B. & Parnavelas, J. G. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J. Neurosci. 14, 107–123 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson, S., Mione, M., Yun, K. & Rubenstein, J. L. R. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Parnavelas, J. G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Wichterle, H., Turbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in mammalian basal forebrain. Development 128, 3759–3771 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Marin, O., Anderson, S. A. & Rubenstein, J. L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Corbin, J. G., Gaiano, N., Machold, R. P., Langston, A. & Fishell, G. The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Toresson, H., Potter, S. S. & Campbell, K. Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Yun, K., Potter, S. & Rubenstein, J. L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15, 1012–1024 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128, 1757–1769 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Miller, R. H. Oligodendrocyte origins. Trends Neurosci. 19, 92–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Leber, S. M., Breedlove, S. M. & Sanes, J. R. Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J. Neurosci. 10, 2451–2462 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Richardson, W. D., Pringle, N. P., Yu, W. P. & Hall, A. C. Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci. 19, 58–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Richardson, W. D. et al. Oligodendrocyte lineage and the motor neuron connection. Glia 29, 136–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Wynshaw-Boris, A. & Gambello, M. J. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15, 639–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Brose, K. & Tessier-Lavigne, M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Yuan, W. et al. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 15, 290–306 (1999).

    Article  Google Scholar 

  66. Zhu, Y., Li, H., Zhou, L., Wu, J. Y. & Rao, Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23, 473–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marin, O., Yaron, A., Bagri, A., Tessier-Lavigne, M. & Rubenstein, J. L. R. Sorting of striatal and cortical interneurons regulated by semaphorin– neuropilin interactions. Science 293, 872–875.

  69. Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091–1097 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Brunstrom, J. E., Gray-Swain, M. R., Osborne, P. A. & Pearlman, A. L. Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18, 505–517 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Powell, E. M., Mars, W. M. & Levitt, P. Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30, 79–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Gaiano, N., Kohtz, J. D., Turnbull, D. H. & Fishell, G. A method for rapid gain-of-function studies in the mouse embryonic nervous system. Nat. Neurosci. 2, 812–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Gadisseux, J. F., Goffinet, A. M., Lyon, G. & Evrard, P. The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis. J. Comp. Neurol. 324, 94–114 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Meyer, G, Soria, J. M., Martinez-Galan, J. R., Begona, M-C. & Fairen, A., Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Fishell lab for discussions, and N. Gaiano and I. Zohn for reading the manuscript. We also thank H. Wichterle and A. Alvarez-Buylla for helping to guide our thinking about cell migration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gord Fishell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbin, J., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4 (Suppl 11), 1177–1182 (2001). https://doi.org/10.1038/nn749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing