Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Figure-ground mechanisms provide structure for selective attention

Abstract

Attention depends on figure-ground organization: figures draw attention, whereas shapes of the ground tend to be ignored. Recent research has revealed mechanisms for figure-ground organization in the visual cortex, but how these mechanisms relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2 in Macaca mulatta. Although we found assignment of border ownership for attended and for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron's preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron's preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perception tends to segregate the optical image into figure and ground regions.
Figure 2: Motivation and experimental design.
Figure 3: Convergence of border ownership and attention influences in V2 neurons.
Figure 4: The time course of border-ownership signal and attention modulation.
Figure 5: The responses of two example neurons to the border between overlapping figures.
Figure 6: Correlation between border-ownership modulation and spatial asymmetry of attention effect.
Figure 7: A model of figure-ground organization and selective attention.

Similar content being viewed by others

References

  1. Rubin, E. Visuell wahrgenommene Figuren (Gyldendals, Copenhagen, 1921).

    Google Scholar 

  2. Koffka, K. Principles of Gestalt Psychology (Harcourt, Brace and World, New York, 1935).

    Google Scholar 

  3. Nakayama, K., Shimojo, S. & Silverman, G.H. Stereoscopic depth: its relation to image segmentation, grouping and the recognition of occluded objects. Perception 18, 55–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Driver, J. & Baylis, G.C. Edge-assignment and figure-ground segmentation in short-term visual matching. Cognit. Psychol. 31, 248–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H., Friedman, H.S. & von der Heydt, R. Coding of border ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qiu, F.T. & von der Heydt, R. Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules. Neuron 47, 155–166 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qiu, F.T. & von der Heydt, R. Neural representation of transparent overlay. Nat. Neurosci. 10, 283–284 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Motter, B.C. Focal attention produces spatially selective processing in visual cortical areas V1, V2 and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Bender, D.B. & Youakim, M. Effect of attentive fixation in macaque thalamus and cortex. J. Neurophysiol. 85, 219–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Marcus, D.S. & Van Essen, D.C. Scene segmentation and attention in primate cortical areas V1 and V2. J. Neurophysiol. 88, 2648–2658 (2002).

    Article  PubMed  Google Scholar 

  13. Friedman, H.S., Zhou, H. & von der Heydt, R. The coding of uniform color figures in monkey visual cortex. J. Physiol. (Lond.) 548, 593–613 (2003).

    Article  CAS  Google Scholar 

  14. Motter, B.C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci. 14, 2190–2199 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schütze, H., Niebur, E. & von der Heydt, R. Modeling cortical mechanisms of border ownership coding. J. Vis. 3, 114 (2003).

    Article  Google Scholar 

  16. Craft, E., Schütze, H., Niebur, E. & von der Heydt, R. A neural model of figure-ground organization. J. Neurophysiol. 97, 4310–4326 (2007).

    Article  PubMed  Google Scholar 

  17. Intriligator, J. & Cavanagh, P. The spatial resolution of visual attention. Cognit. Psychol. 43, 171–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Girard, P., Hupe, J.M. & Bullier, J. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85, 1328–1331 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Goldberg, M.E., Bisley, J.W., Powell, K.D. & Gottlieb, J. Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. Prog. Brain Res. 155, 157–175 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lamme, V.A.F. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zipser, K., Lamme, V.A.F. & Schiller, P.H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, T.S., Mumford, D., Romero, R. & Lamme, V.A.F. The role of the primary visual cortex in higher level vision. Vision Res. 38, 2429–2454 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Mack, A., Tang, B., Tuma, R., Kahn, S. & Rock, I. Perceptual organization and attention. Cognit. Psychol. 24, 475–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Moore, C.M. & Egeth, H. Perception without attention: evidence of grouping under conditions of inattention. J. Exp. Psychol. Hum. Percept. Perform. 23, 339–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Driver, J., Davis, G., Russell, C., Turatto, M. & Freeman, E. Segmentation, attention and phenomenal visual objects. Cognition 80, 61–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Connor, C.E., Preddie, D.C., Gallant, J.L. & Vanessen, D.C. Spatial attention effects in macaque area V4. J. Neurosci. 17, 3201–3214 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grossberg, S. How does a brain build a cognitive code? Psychol. Rev. 87, 1–51 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Schiller, P.H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10, 717–746 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank T.J. Macuda for help with the behavioral training of monkey TE; S. Mihalas, E. Niebur, P.J. O'Herron and N.R. Zhang for suggestions and critical comments on the manuscript and O. Garalde for technical assistance. This research was supported by US National Institutes of Health grants EY02966 and EY16281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger von der Heydt.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, F., Sugihara, T. & von der Heydt, R. Figure-ground mechanisms provide structure for selective attention. Nat Neurosci 10, 1492–1499 (2007). https://doi.org/10.1038/nn1989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing