Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IGF-I specifically enhances axon outgrowth of corticospinal motor neurons

Abstract

Corticospinal motor neurons (CSMN) are among the most complex CNS neurons; they control voluntary motor function and are prototypical projection neurons. In amyotrophic lateral sclerosis (ALS), both spinal motor neurons and CSMN degenerate; their damage contributes centrally to the loss of motor function in spinal cord injury. Direct investigation of CSMN is severely limited by inaccessibility in the heterogeneous cortex. Here, using new CSMN purification and culture approaches, and in vivo analyses, we report that insulin-like growth factor-1 (IGF-I) specifically enhances the extent and rate of murine CSMN axon outgrowth, mediated via the IGF-I receptor and downstream signaling pathways; this is distinct from IGF-I support of neuronal survival. In contrast, brain-derived neurotrophic factor (BDNF) enhances branching and arborization, but not axon outgrowth. These experiments define specific controls over directed differentiation of CSMN, indicate a distinct role of IGF-I in CSMN axon outgrowth during development, and might enable control over CSMN derived from neural precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrograde labeling and FACS purification yields pure populations of CSMN.
Figure 2: FACS-purified CSMN retain the cellular and molecular characteristics of mature CSMN in culture.
Figure 3: FACS-purified CSMN express a distinct set of growth factor and neurotrophin receptors, both in vitro and in vivo.
Figure 4: IGF-I and BDNF have distinct effects on CSMN morphology.
Figure 5: IGF-I induces a marked and specific increase in CSMN axon outgrowth.
Figure 6: Local application of IGF-I results in immediate and marked increase in the rate of CSMN axon outgrowth.
Figure 7: Blockade of IGF-I signaling via the IGF-I receptor and the PI3K and ERK/MAPK pathways results in axon outgrowth defects in vitro.
Figure 8: Localized in vivo blockade of IGF-I signaling markedly reduces CSMN axon growth.

Similar content being viewed by others

References

  1. Winhammar, J.M., Rowe, D.B., Henderson, R.D. & Kiernan, M.C. Assessment of disease progression in motor neuron disease. Lancet Neurol. 4, 229–238 (2005).

    Article  PubMed  Google Scholar 

  2. Bruijn, L.I., Miller, T.M. & Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Pasinelli, P. & Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Rosler, K.M., Truffert, A., Hess, C.W. & Magistris, M.R. Quantification of upper motor neuron loss in amyotrophic lateral sclerosis. Clin. Neurophysiol. 111, 2208–2218 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hains, B.C., Black, J.A. & Waxman, S.G. Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J. Comp. Neurol. 462, 328–341 (2003).

    Article  PubMed  Google Scholar 

  6. Schwab, M.E. Repairing the injured spinal cord. Science 295, 1029–1031 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, J., Magavi, S.S. & Macklis, J.D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc. Natl. Acad. Sci. USA 101, 16357–16362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J.D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Popken, G.J. et al. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci. 19, 2056–2068 (2004).

    Article  PubMed  Google Scholar 

  11. Wilkins, A., Chandran, S. & Compston, A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36, 48–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Bondy, C.A. & Lee, W.H. Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann. NY Acad. Sci. 692, 33–43 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Bondy, C.A. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J. Neurosci. 11, 3442–3455 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Kusky, J.R., Ye, P. & D'Ercole, A.J. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J. Neurosci. 20, 8435–8442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baker, J., Liu, J.P., Robertson, E.J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  17. Beck, K.D., Powell-Braxton, L., Widmer, H.R., Valverde, J. & Hefti, F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14, 717–730 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Neff, N.T. et al. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J. Neurobiol. 24, 1578–1588 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Dobrowolny, G. et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol. 168, 193–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaspar, B.K., Llado, J., Sherkat, N., Rothstein, J.D. & Gage, F.H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Clemmons, D.R. et al. Role of insulin-like growth factor binding proteins in the control of IGF actions. Prog. Growth Factor Res. 6, 357–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Giehl, K.M. Trophic dependencies of rodent corticospinal neurons. Rev. Neurosci. 12, 79–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Harrington, A.W. et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl. Acad. Sci. USA 101, 6226–6230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Junger, H. & Varon, S. Neurotrophin-4 (NT-4) and glial cell line-derived neurotrophic factor (GDNF) promote the survival of corticospinal motor neurons of neonatal rats in vitro. Brain Res. 762, 56–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Catapano, L.A., Arlotta, P., Cage, T.A. & Macklis, J.D. Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry. Eur. J. Neurosci. 19, 2421–2434 (2004).

    Article  PubMed  Google Scholar 

  26. Catapano, L.A., Arnold, M.W., Perez, F.A. & Macklis, J.D. Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development. J. Neurosci. 21, 8863–8872 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hevner, R.F. et al. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25, 139–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Frantz, G.D., Bohner, A.P., Akers, R.M. & McConnell, S.K. Regulation of the POU domain gene SCIP during cerebral cortical development. J. Neurosci. 14, 472–485 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giehl, K.M. et al. Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J. Neurosci. 21, 3492–3502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deckwerth, T.L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. David, S. & Aguayo, A.J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg, J.L. & Barres, B.A. Neuronal regeneration: extending axons from bench to brain. Curr. Biol. 8, R310–R312 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Li, S.L., Kato, J., Paz, I.B., Kasuya, J. & Fujita-Yamaguchi, Y. Two new monoclonal antibodies against the alpha subunit of the human insulin-like growth factor-I receptor. Biochem. Biophys. Res. Commun. 196, 92–98 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Pietrzkowski, Z., Wernicke, D., Porcu, P., Jameson, B.A. & Baserga, R. Inhibition of cellular proliferation by peptide analogues of insulin-like growth factor 1. Cancer Res. 52, 6447–6451 (1992).

    CAS  PubMed  Google Scholar 

  35. Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, R.Y. & Snider, W.D. Different signaling pathways mediate regenerative versus developmental sensory axon growth. J. Neurosci. 21, RC164 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fryer, R.H. et al. Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J. Comp. Neurol. 374, 21–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Huang, E.J. et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development 126, 2191–2203 (1999).

    CAS  PubMed  Google Scholar 

  39. Bloch-Gallego, E. et al. Survival in vitro of motoneurons identified or purified by novel antibody-based methods is selectively enhanced by muscle-derived factors. Development 111, 221–232 (1991).

    CAS  PubMed  Google Scholar 

  40. Meyer-Franke, A., Kaplan, M.R., Pfrieger, F.W. & Barres, B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Rotwein, P., Burgess, S.K., Milbrandt, J.D. & Krause, J.E. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc. Natl. Acad. Sci. USA 85, 265–269 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sosa, L. et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat. Neurosci. 9, 993–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y. et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat. Neurosci. 8, 1151–1159 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Schwab, M.E. Nogo and axon regeneration. Curr. Opin. Neurobiol. 14, 118–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 46, 1244–1249 (1996).

  47. A controlled trial of recombinant methionyl human BDNF in ALS: the BDNF Study Group (Phase III) Neurology, 52, 1427–1433 (1999).

  48. Borasio, G.D. et al. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology 51, 583–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lai, E.C. et al. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology 49, 1621–1630 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Horch, H.W. & Katz, L.C. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Molyneaux for help and advice on neonatal surgery; L. Catapano and J. Chen for help with neuron isolation; D. Dombkowski for expert advice and optimization of FACS methods; D. Scadden for generous access to tissue culture facilities near the FACS facility; N. Kishi for help with Sholl analysis; J. Emsley for advice on statistical analysis; L. Reichardt, D. Kaplan, T. Jessell and M. Leid for gifts of antibodies; F. Briggs, A. Eswar and A. Palmer for technical assistance; A. Chandawarkar and J. Nagurney for help with blinded data analysis and immunocytochemistry; T. Jakobs for help with live imaging; and J. Emsley, P. Arlotta, S. Sohur, J. Menezes and other members of the Macklis lab for critical reading of the manuscript. This work was supported by grants from the US National Institutes of Health (NS49553, NS45523 and NS41590) and the ALS Association (to J.D.M.). P.H.O. was supported by a Harvard Center for Neurodegeneration and Repair Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

This study was jointly designed by P.H.Ö. and J.D.M.; experiments were performed by P.H.Ö.; P.H.Ö. and J.D.M. jointly analyzed and interpreted data and jointly wrote the paper.

Corresponding author

Correspondence to Jeffrey D Macklis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The effects of IGF-I are specific to axon extension. (PDF 961 kb)

Supplementary Fig. 2

Other growth factors do not substantially affect CSMN morphology. (PDF 1221 kb)

Supplementary Fig. 3

IGF-I receptor is expressed in CSMN axons, anti-IGF-IRα, and anti-TrkB antibodies binds to CSMN axons in vivo, and CSMN death does not occur following antibody application. (PDF 1362 kb)

Supplementary Video 1

Local application of IGF-I via placement of a single IGF-I-coated bead near CSMN cell body/axon hillock results in immediate and dramatic effects on the rate of CSMN axon outgrowth. (MOV 18131 kb)

Supplementary Video 2

In the presence of control beads, coated with BSA or PBS, the rate of axon outgrowth is quite slow. (MOV 24296 kb)

Supplementary Video 3

BDNF-coated beads induce immediate and local branching at the site of placement. (MOV 12508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdinler, P., Macklis, J. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9, 1371–1381 (2006). https://doi.org/10.1038/nn1789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing