Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variable channel expression in identified single and electrically coupled neurons in different animals

Abstract

It is often assumed that all neurons of the same cell type have identical intrinsic properties, both within an animal and between animals. We exploited the large size and small number of unambiguously identifiable neurons in the crab stomatogastric ganglion to test this assumption at the level of channel mRNA expression and membrane currents (measured in voltage-clamp experiments). In lateral pyloric (LP) neurons, we saw strong correlations between measured current and the abundance of Shal and BK-KCa mRNAs (encoding the Shal-family voltage-gated potassium channel and large-conductance calcium-activated potassium channel, respectively). We also saw two- to fourfold interanimal variability for three potassium currents and their mRNA expression. Measurements of channel expression in the two electrically coupled pyloric dilator (PD) neurons showed significant interanimal variability, but copy numbers for IH (encoding the hyperpolarization-activated, inward-current channel) and Shal mRNA in the two PD neurons from the same crab were similar, suggesting that the regulation of some currents may be shared in electrically coupled neurons.

Note: The PDF version of this article was corrected on 05 February 2006. Please see the PDF for details.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pyloric rhythm of the STG of the crab C. borealis.
Figure 2: Variability of K+ conductances in LP neurons.
Figure 3: Comparison of PD and LP channel expression.
Figure 4: Paired PD neurons have strongly correlated abundances of Shal and IH, but not BK-KCa and Shab, mRNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Golowasch, J., Goldman, M.S., Abbott, L.F. & Marder, E. Failure of averaging in the construction of a conductance-based neuron model. J. Neurophysiol. 87, 1129–1131 (2002).

    Article  Google Scholar 

  2. Prinz, A.A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).

    Article  CAS  Google Scholar 

  3. Cristobal, R. et al. Assessment of differential gene expression in vestibular epithelial cell types using microarray analysis. Brain Res. Mol. Brain Res. 133, 19–36 (2005).

    Article  CAS  Google Scholar 

  4. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).

    Article  CAS  Google Scholar 

  5. Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat. Med. 5, 117–122 (1999).

    Article  CAS  Google Scholar 

  6. Tietjen, I., Rihel, J. & Dulac, C.G. Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium. Int. J. Dev. Biol. 49, 201–207 (2005).

    Article  CAS  Google Scholar 

  7. Selverston, A.I. & Moulins, M. (eds.) The Crustacean Stomatogastric System (Springer-Verlag, Berlin, 1987).

    Book  Google Scholar 

  8. Marder, E. Cholinergic motor neurones in the stomatogastric system of the lobster. J. Physiol. (Lond.) 257, 63–86 (1976).

    Article  CAS  Google Scholar 

  9. Bucher, D., Prinz, A.A. & Marder, E. Animal-to-animal variability in motor pattern production in adults and during growth. J. Neurosci. 25, 1611–1619 (2005).

    Article  CAS  Google Scholar 

  10. Liu, Z., Golowasch, J., Marder, E. & Abbott, L.F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).

    Article  CAS  Google Scholar 

  11. Baro, D.J., Cole, C.L., Zarrin, A.R., Hughes, S. & Harris-Warrick, R.M. Shab gene expression in identified neurons of the pyloric network in the lobster stomatogastric ganglion. Receptors Channels 2, 193–205 (1994) [published erratum appears in Receptors Channels 1994; 2(4): following 350].

    CAS  Google Scholar 

  12. Baro, D.J. et al. Lobster shal: comparison with Drosophila shal and native potassium currents in identified neurons. J. Neurosci. 16, 1689–1701 (1996).

    Article  CAS  Google Scholar 

  13. French, L.B., Lanning, C.C., Matly, M. & Harris-Warrick, R.M. Cellular localization of Shab and Shaw potassium channels in the lobster stomatogastric ganglion. Neuroscience 123, 919–930 (2004).

    Article  CAS  Google Scholar 

  14. Baro, D.J. et al. Molecular underpinnings of motor pattern generation: differential targeting of shal and shaker in the pyloric motor system. J. Neurosci. 20, 6619–6630 (2000).

    Article  CAS  Google Scholar 

  15. Baro, D.J. & Harris-Warrick, R.M. Differential expression and targeting of K+ channel genes in the lobster pyloric central pattern generator. Ann. NY Acad. Sci. 860, 281–295 (1998).

    Article  CAS  Google Scholar 

  16. Baro, D.J. et al. Quantitative single-cell-reverse transcription-PCR demonstrates that A- current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. J. Neurosci. 17, 6597–6610 (1997).

    Article  CAS  Google Scholar 

  17. Atkinson, N.S., Robertson, G.A. & Ganetzky, B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253, 551–555 (1991).

    Article  CAS  Google Scholar 

  18. Pallanck, L. & Ganetzky, B. Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum. Mol. Genet. 3, 1239–1243 (1994).

    Article  CAS  Google Scholar 

  19. MacLean, J.N. et al. Activity-independent coregulation of IA and Ih in rhythmically active neurons. J. Neurophysiol. 94, 3601–3617 (2005).

    Article  Google Scholar 

  20. MacLean, J.N., Zhang, Y., Johnson, B.R. & Harris-Warrick, R.M. Activity-independent homeostasis in rhythmically active neurons. Neuron 37, 109–120 (2003).

    Article  CAS  Google Scholar 

  21. Goldman, M.S., Golowasch, J., Marder, E. & Abbott, L.F. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238 (2001).

    Article  CAS  Google Scholar 

  22. Luther, J.A. et al. Episodic bouts of activity accompany recovery of rhythmic output by a neuromodulator- and activity-deprived adult neural network. J. Neurophysiol. 90, 2720–2730 (2003).

    Article  Google Scholar 

  23. Thoby-Brisson, M. & Simmers, J. Long-term neuromodulatory regulation of a motor pattern-generating network: maintenance of synaptic efficacy and oscillatory properties. J. Neurophysiol. 88, 2942–2953 (2002).

    Article  Google Scholar 

  24. Ma'ayan, A., Blitzer, R.D. & Iyengar, R. Toward predictive models of mammalian cells. Annu. Rev. Biophys. Biomol. Struct. 34, 319–349 (2005).

    Article  CAS  Google Scholar 

  25. Ma'ayan, A. et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309, 1078–1083 (2005).

    Article  CAS  Google Scholar 

  26. Greenspan, R.J. The flexible genome. Nat. Rev. Genet. 2, 383–387 (2001).

    Article  CAS  Google Scholar 

  27. Tkatch, T., Baranauskas, G. & Surmeier, D.J. Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons. J. Neurosci. 20, 579–588 (2000).

    Article  CAS  Google Scholar 

  28. Liss, B. et al. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 20, 5715–5724 (2001).

    Article  CAS  Google Scholar 

  29. Golowasch, J. & Marder, E. Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67, 318–331 (1992).

    Article  CAS  Google Scholar 

  30. Tierney, A.J. & Harris-Warrick, R.M. Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67, 599–609 (1992).

    Article  CAS  Google Scholar 

  31. Harris-Warrick, R.M., Coniglio, L.M., Levini, R.M., Gueron, S. & Guckenheimer, J. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74, 1404–1420 (1995).

    Article  CAS  Google Scholar 

  32. Golowasch, J., Abbott, L.F. & Marder, E. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J. Neurosci. 19, RC33 (1999).

    Article  CAS  Google Scholar 

  33. Marder, E. & Prinz, A.A. Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24, 1145–1154 (2002).

    Article  CAS  Google Scholar 

  34. Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    Article  CAS  Google Scholar 

  35. Zhang, W. & Linden, D.J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4, 885–900 (2003).

    Article  CAS  Google Scholar 

  36. Saez, J.C., Connor, J.A., Spray, D.C. & Bennett, M.V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc. Natl. Acad. Sci. USA 86, 2708–2712 (1989).

    Article  CAS  Google Scholar 

  37. LeMasson, G., Marder, E. & Abbott, L.F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915–1917 (1993).

    Article  CAS  Google Scholar 

  38. Hooper, S.L. et al. The innervation of the pyloric region of the crab, Cancer borealis: homologous muscles in decapod species are differently innervated. J. Comp. Physiol. [A] 159, 227–240 (1986).

    Article  CAS  Google Scholar 

  39. Weimann, J.M., Meyrand, P. & Marder, E. Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. J. Neurophysiol. 65, 111–122 (1991).

    Article  CAS  Google Scholar 

  40. Rozen, S. & Skaletzky, H. Primer3 on the WWW for general users and for biologist programmers. in Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds. Krawetz, S. & Misener, S.) 365–386 (Humana Press, Totowa, New Jersey, 2000).

    Google Scholar 

  41. Baro, D.J., Quinones, L., Lanning, C.C., Harris-Warrick, R.M. & Ruiz, M. Alternate splicing of the shal gene and the origin of I(A) diversity among neurons in a dynamic motor network. Neuroscience 106, 419–432 (2001).

    Article  CAS  Google Scholar 

  42. Liss, B. Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acids Res. 30, e89 (2002).

    Article  Google Scholar 

  43. Sugino, et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Griffith for comments on an earlier version of the manuscript. This work was supported by the McDonnell Foundation, NS17813, MH46742 and MH70292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Schulz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, D., Goaillard, JM. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 9, 356–362 (2006). https://doi.org/10.1038/nn1639

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing