Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention

Abstract

The analysis of a peripheral visual location can be improved in two ways: either by orienting one's gaze (usually by making a foveating saccade) or by 'covertly' shifting one's attention to the peripheral location without making an eye movement. The premotor theory of attention holds that saccades and spatial shifts of attention share a common functional module with a distinct neuronal basis. Using single-unit recording from the brains of trained rhesus monkeys, we investigated whether the superior colliculus, the major subcortical center for the control of saccades, is part of this shared network for attention and saccades. Here we show that a distinct type of neuron in the intermediate layer of the superior colliculus, the visuomotor neuron, which is known to be centrally involved in the preparation of saccades, is also active during covert shifts of attention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatially precise cueing improves visual acuity.
Figure 2: Representative examples of the three groups of superior colliculus neurons distinguished: (a) visual neuron, (b) visuomotor neuron (c) motor neuron.
Figure 3: Population responses of superior colliculus neurons (from both monkeys) for shifts of attention induced by spatially precise cueing: (a) visual, (b) visuomotor and (c) motor neurons.
Figure 4: Population responses of superior colliculus neurons for shifts of attention induced by quasi-symbolic cueing of relevant spatial location.
Figure 5: The size of the 'spotlight of attention' is spatially restricted.

Similar content being viewed by others

References

  1. Wurtz, R.H. & Mohler, C.W. Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J. Neurophysiol. 39, 745–765 (1976).

    Article  CAS  Google Scholar 

  2. Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  3. Deubel, H. & Schneider, W.X. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res. 36, 1827–1837 (1996).

    Article  CAS  Google Scholar 

  4. Shepard, R.N. & Podgorny, P. Spatial factors in visual attention: a reply to Crassini. J. Exp. Psychol. Hum. Percept. Perform. 12, 383–387 (1986).

    Article  CAS  Google Scholar 

  5. Hoffman, J.E. & Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57, 787–795 (1995).

    Article  CAS  Google Scholar 

  6. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 897–916 (1995).

    Article  Google Scholar 

  7. Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987).

    Article  CAS  Google Scholar 

  8. Graighero, L., Fadiga, L., Rizzolatti, G. & Umilta, C. Action for perception: a motor-visual attentional effect. J. Exp. Psychol. Hum. Percept. Perform. 25, 1673–1692 (1999).

    Article  Google Scholar 

  9. Stuphorn, V., Bauswein, E. & Hoffmann, K.P. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. J. Neurophysiol. 83, 1283–1299 (2000).

    Article  CAS  Google Scholar 

  10. Basso, M. & Wurtz, R. Modulation of neuronal activity by target uncertainty. Nature 389, 66–69 (1997).

    Article  CAS  Google Scholar 

  11. Basso, M. & Wurtz, R. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).

    Article  CAS  Google Scholar 

  12. Horowitz, G. & Newsome, W. Separate signals for target selection and movement specification in the superior colliculus. Science 284, 1158–1161 (1999).

    Article  Google Scholar 

  13. Horowitz, G. & Newsome, W. Target selection for saccadic eye movements: direction-selective visual responses in the superior colliculus. J. Neurophysiol. 86, 2527–2542 (2001).

    Article  Google Scholar 

  14. McPeek, R. & Keller, E. Saccade target selection in the superior colliculus during a visual search task. J. Neurophysiol. 88, 2019–2034 (2002).

    Article  Google Scholar 

  15. Horwitz, G. & Newsome, W. Target selection for saccadic eye movements: prelude activity in superior colliculus during a direction-discrimination task. J. Neurophysiol. 86, 2543–2558 (2001).

    Article  CAS  Google Scholar 

  16. Mohler, C.W. & Wurtz, R.H. Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. Neurophysiol. 39, 722–744 (1976).

    Article  CAS  Google Scholar 

  17. Robinson, D.A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 12, 1795–1808 (1972).

    Article  CAS  Google Scholar 

  18. Kustov, A. & Robinson, D.L. Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996).

    Article  CAS  Google Scholar 

  19. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998).

    Article  CAS  Google Scholar 

  20. Hartigan, J.A. & Wong, M.A. A k-means clustering algorithm. Appl. Stat. 28, 100–108 (1979).

    Article  Google Scholar 

  21. Goldberg, M.E. & Wurtz, R.H. Activity of superior colliculus in behaving monkey: II. Effect of attention on neuronal responses. J. Neurophysiol. 35, 560–574 (1972).

    Article  CAS  Google Scholar 

  22. Robinson, D.L. & Kertzman, C. Covert orienting of attention in macaques. III. Contribution of the superior colliculus. J. Neurophysiol. 74, 713–721 (1995).

    Article  CAS  Google Scholar 

  23. Gattass, R. & Desimone, R. Responses of cells in the superior colliculus during performance of a spatial attention task in the macaque. Rev. Bras. Biol. 56, 257–279 (1996).

    PubMed  Google Scholar 

  24. Munoz, D.P. & Wurtz, R.H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73, 2313–2333 (1995).

    Article  CAS  Google Scholar 

  25. Sparks, D.L. & Hartwich-Young, R. The deep layers of the superior colliculus. in The Neurobiology of Saccadic Eye Movements. (eds. Wurtz, R.H. & Goldberg, M.E.) 213–255 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  26. Schiller, P.H. & Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35, 915–924 (1972).

    Article  CAS  Google Scholar 

  27. Munoz, D.P. & Wurtz, R.H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73, 2313–2333 (1995).

    Article  CAS  Google Scholar 

  28. Lunenburger, L., Kleiser, R., Stuphorn, V., Miller, L.E. & Hoffmann, K.P. A possible role of the superior colliculus in eye-hand coordination. Prog. Brain. Res. 134, 109–125 (2001).

    Article  CAS  Google Scholar 

  29. Moore, T. & Fallah, M. Control of eye-movements and spatial attention. Proc. Natl. Acad. Sci. USA 98, 1273–1276 (2001).

    Article  CAS  Google Scholar 

  30. Bushnell, M.C., Goldberg, M.E. & Robinson, D.L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46, 755–772 (1981).

    Article  CAS  Google Scholar 

  31. Andersen, R.A. & Gnadt, J.W. Posterior parietal cortex. Rev. Oculomot. Res. 3, 315–335 (1989).

    CAS  PubMed  Google Scholar 

  32. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  33. Taylor, M.M. PEST: Efficient estimates on probability functions. J. Acoust. Soc. Amer. 41, 782–787 (1967).

    Article  Google Scholar 

  34. McKee, S.P., Klein, S.A. & Teller, D.Y. Statistical properties of forced choice psychometric functions: implications of probit analysis. Percept. Psychophy. 37, 286–298 (1985).

    Article  CAS  Google Scholar 

  35. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  36. Thier, P. & Erickson, R.G. Responses of visual-tracking neurons from cortical area MSTl to visual, eye and head motion. Eur. J. Neurosci. 4, 539–553 (1992).

    Article  Google Scholar 

  37. Mays, L.E. & Sparks, D.L. Dissociation of visual and saccade-related responses in superior colliculus neurons. J. Neurophysiol. 43, 207–232 (1980).

    Article  CAS  Google Scholar 

  38. Wurtz, R.H. Vision for the control of movement. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 37, 2130–2145 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible by grants from the Schilling Foundation (TS 013/001.184/98), the DFG Schwerpunktprogramm “Sensomotorische Integration” (Ha 2847/2-1) and the DFG Sonderforschungsbereich (550-A2 and 550-A7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignashchenkova, A., Dicke, P., Haarmeier, T. et al. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 7, 56–64 (2004). https://doi.org/10.1038/nn1169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing