Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo

A Corrigendum to this article was published on 01 July 2006

This article has been updated

Abstract

Behavior-contingent network oscillations bring about transient, functionally coherent neuronal assemblies in the cerebral cortex, including the hippocampus. Inhibitory input on and close to the soma is believed to phase intrinsic oscillations and output of pyramidal cells, but the function of GABA release to pyramidal cell dendrites remains unknown. We recorded the oscillation-locked spike timing of identified bistratified interneurons in rats. These cells mainly innervated small dendritic shafts of pyramidal cells co-aligned with the glutamatergic Schaffer collateral/commissural input. During theta oscillations, bistratified cells fired at a phase when, on average, pyramidal cell dendrites are most hyperpolarized. Interneurons targeting the perisomatic domain discharge at an earlier phase. During sharp wave–associated ripples, bistratified cells fired with high frequency and in-phase with basket cells, on average 1–2 ms after the discharges in pyramidal cell somata and dendrites. Our results indicate that bistratified cells rhythmically modulate glutamatergic input to the dendrites of pyramidal cells to actively promote the precise input/output transformation during network oscillations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Firing pattern and labeling of a bistratified cell (T92a) in the hippocampus in vivo.
Figure 2: Fluorescence micrographs showing bistratified cells expressing immunoreactivity for parvalbumin, somatostatin, neuropeptide Y and the α1 subunit of the GABAA receptor.
Figure 3: Synaptic targets of bistratified cells.
Figure 4: The firing of an identified bistratified cell (T104b) is intimately related to ongoing network oscillations.
Figure 5: Comparison of the firing patterns of bistratified cells and basket cells during theta oscillations, whole ripple episodes and single ripple cycles (basket cell data for a and b are taken from ref. 9 with permission).

Similar content being viewed by others

Change history

  • 20 June 2006

    updated PDF w/ new value

Notes

  1. *NOTE: In the version of this article initially published, the dose of urethane anesthesia in the Methods section was incorrect. The correct dose should be 1.25 g per kg of body weight. The error has been corrected in the PDF version of the article. The authors regret the error.

References

  1. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, Oxford, 1978).

    Google Scholar 

  2. O'Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  3. Wilson, M.A. & McNaughton, B.L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  4. Skaggs, W.E., McNaughton, B.L., Wilson, M.A. & Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  Google Scholar 

  5. Andersen, P. & Eccles, J.C. Inhibitory phasing of neuronal discharge. Nature 196, 645–542 (1962).

    Article  CAS  Google Scholar 

  6. Andersen, P., Eccles, J.C. & Loyning, Y. Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature 198, 540–542 (1963).

    Article  CAS  Google Scholar 

  7. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  8. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  Google Scholar 

  9. Klausberger, T. et al. Brain state– and cell type–specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  10. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  11. Buzsaki, G. Feed-forward inhibition in the hippocampal formation. Prog. Neurobiol. 22, 131–153 (1984).

    Article  CAS  Google Scholar 

  12. Fricker, D. & Miles, R. Interneurons, spike timing, and perception. Neuron 32, 771–774 (2001).

    Article  CAS  Google Scholar 

  13. Buhl, E.H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    Article  CAS  Google Scholar 

  14. McBain, C.J., DiChiara, T.J. & Kauer, J.A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445 (1994).

    Article  CAS  Google Scholar 

  15. Halasy, K., Buhl, E.H., Lorinczi, Z., Tamas, G. & Somogyi, P. Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus 6, 306–329 (1996).

    Article  CAS  Google Scholar 

  16. Miles, R., Toth, K., Gulyas, A.I., Hajos, N. & Freund, T.F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    Article  CAS  Google Scholar 

  17. Szabadics, J., Lorincz, A. & Tamas, G. Beta and gamma frequency synchronization by dendritic gabaergic synapses and gap junctions in a network of cortical interneurons. J. Neurosci. 21, 5824–5831 (2001).

    Article  CAS  Google Scholar 

  18. Maccaferri, G. & Dingledine, R. Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons. J. Neurosci. 22, 5462–5472 (2002).

    Article  CAS  Google Scholar 

  19. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    Article  CAS  Google Scholar 

  20. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  21. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  22. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  Google Scholar 

  23. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  CAS  Google Scholar 

  24. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  Google Scholar 

  25. Traub, R.D. et al. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev. Neurosci. 13, 1–30 (2002).

    Article  Google Scholar 

  26. Pawelzik, H., Hughes, D.I. & Thomson, A.M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002).

    Article  Google Scholar 

  27. Bland, B.H., Konopacki, J. & Dyck, R.H. Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. J. Neurophysiol. 88, 3046–3066 (2002).

    Article  Google Scholar 

  28. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J. Neurosci. Meth. 65, 113–136 (1996).

    Article  CAS  Google Scholar 

  29. Kosaka, T. & Hama, K. Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study. J. Comp. Neurol. 231, 150–161 (1985).

    Article  CAS  Google Scholar 

  30. Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).

    Article  CAS  Google Scholar 

  31. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I.A. & Laursen, A.M. Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J. Physiol. 305, 279–296 (1980).

    Article  CAS  Google Scholar 

  32. Gulledge, A.T. & Stuart, G.J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).

    Article  CAS  Google Scholar 

  33. Kamondi, A., Acsady, L., Wang, X.J. & Buzsaki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261 (1998).

    Article  CAS  Google Scholar 

  34. Tsubokawa, H. & Ross, W.N. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 2896–2906 (1996).

    Article  CAS  Google Scholar 

  35. Magee, J.C. et al. Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J. Neurophysiol. 74, 1335–1342 (1995).

    Article  CAS  Google Scholar 

  36. Jahnsen, H. & Llinas, R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J. Physiol. 349, 205–226 (1984).

    Article  CAS  Google Scholar 

  37. Roy, J.P., Clercq, M., Steriade, M. & Deschenes, M. Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. J. Neurophysiol. 51, 1220–1235 (1984).

    Article  CAS  Google Scholar 

  38. Crunelli, V. & Leresche, N. A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci. 14, 16–21 (1991).

    Article  CAS  Google Scholar 

  39. Lorincz, A., Notomi, T., Tamas G, Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5, 1185–1193 (2002).

    Article  Google Scholar 

  40. Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsaki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    Article  CAS  Google Scholar 

  41. Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).

    Article  CAS  Google Scholar 

  42. Colbert, C.M., Magee, J.C., Hoffman, D.A. & Johnston, D. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 17, 6512–6521 (1997).

    Article  CAS  Google Scholar 

  43. Chen, W.R., Midtgaard, J. & Shepherd, G.M. Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278, 463–467 (1997).

    Article  CAS  Google Scholar 

  44. Vezzani, A., Sperk, G. & Colmers, W.F. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci. 22, 25–30 (1999).

    Article  CAS  Google Scholar 

  45. Moore, S.D., Madamba, S.G., Joels, M. & Siggins, G.R. Somatostatin augments the M-current in hippocampal neurons. Science 239, 278–280 (1988).

    Article  CAS  Google Scholar 

  46. Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell-type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J. Physiol. 542, 193–210 (2002).

    Article  CAS  Google Scholar 

  47. Ferraguti, F. et al. Immunolocalisation of metabotrobic glutamate receptor 1? (mGluR1?) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus (in press).

  48. Allen, Y.S. et al. Neuropeptide Y distribution in the rat brain. Science 221, 877–879 (1983).

    Article  CAS  Google Scholar 

  49. Zezula, J., Fuchs, K. & Sieghart, W. Separation of alpha 1, alpha 2 and alpha 3 subunits of the GABAA-benzodiazepine receptor complex by immunoaffinity chromatography. Brain Res. 563, 325–328 (1991).

    Article  CAS  Google Scholar 

  50. Levey, A.I., Edmunds, S.M., Hersch, S.M., Wiley, R.G. & Heilman CJ. Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. J. Comp. Neurol. 351, 339–356 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Cobden, B. Micklem and L. Norman for technical assistance, S. Gray and G. Horseman from Cambridge Electronic Design for computing assistance, Y. Dalezios for help with statistics, P. Szucs for help with reconstructions of cells and G. Buzsaki, J. Csicsvari, M. Hausser and G. Tamas for critically reading an earlier version of the manuscript. This work was supported in part by grant P16637-B02 from the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klausberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klausberger, T., Márton, L., Baude, A. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7, 41–47 (2004). https://doi.org/10.1038/nn1159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing