Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity

Abstract

Zinc ions are concentrated in the central nervous system and regulate GABAA receptors, which are pivotal mediators of inhibitory synaptic neurotransmission. Zinc ions inhibit GABAA receptor function by an allosteric mechanism that is critically dependent on the receptor subunit composition: αβ subunit combinations show the highest sensitivity, and αβγ isoforms are the least sensitive. Here we propose a mechanistic and structural basis for this inhibition and its dependence on the receptor subunit composition. We used molecular modeling to identify three discrete sites that mediate Zn2+ inhibition. One is located within the ion channel, and the other two are on the external amino (N)-terminal face of the receptor at the interfaces between α and β subunits. We found that the characteristically low Zn2+ sensitivity of GABAA receptors containing the γ2 subunit results from disruption to two of the three sites after receptor subunit co-assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zinc inhibition of GABA-activated currents is not solely reliant on His267 in the β subunit.
Figure 2: Scanning the α1 subunit for Zn2+ binding residues.
Figure 3: Zn2+ potency is affected by both external histidine and acidic residues.
Figure 4: Structural location of interface residues affecting Zn2+ inhibition.
Figure 5: Three clusters of residues underlie Zn2+ inhibition on α1β3 receptors.
Figure 6: The low Zn2+ sensitivity of αβγ receptors reflects the disruption of the ion channel and of an extracellular site.

Similar content being viewed by others

References

  1. Frederickson, C.J. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31, 145–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Smart, T.G., Xie, X. & Krishek, B.J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42, 393–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Frederickson, C.J. & Bush, A.I. Synaptically released zinc: physiological functions and pathological effects. Biometals 14, 353–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Draguhn, A., Verdoorn, T.A., Ewert, M., Seeburg, P.H. & Sakmann, B. Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5, 781–788 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Smart, T.G., Moss, S.J., Xie, X. & Huganir, R.L. GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br. J. Pharmacol. 103, 1837–1839 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smart, T.G. A novel modulatory binding site for zinc on the GABAA receptor complex in cultured rat neurones. J. Physiol (Lond.) 447, 587–625 (1992).

    Article  CAS  Google Scholar 

  7. Taketo, M. & Yoshioka, T. Developmental change of GABAA receptor-mediated current in rat hippocampus. Neuroscience 96, 507–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Brooks-Kayal, A.R. et al. γ-Aminobutyric acid(A) receptor subunit expression predicts functional changes in hippocampal dentate granule cells during postnatal development. J. Neurochem. 77, 1266–1278 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Buhl, E.H., Otis, T.S. & Mody, I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271, 369–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Gibbs, J.W. III, Shumate, M.D. & Coulter, D.A. Differential epilepsy-associated alterations in postsynaptic GABAA receptor function in dentate granule and CA1 neurons. J. Neurophysiol. 77, 1924–1938 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Molnar, P. & Nadler, J.V. Lack of effect of mossy fiber-released zinc on granule cell GABAA receptors in the pilocarpine model of epilepsy. J. Neurophysiol. 85, 1932–1940 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Rabow, L.E., Russek, S.J. & Farb, D.H. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21, 189–274 (1996).

    Article  Google Scholar 

  13. Sieghart, W. Structure and pharmacology of γ-Aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 181–234 (1995).

    CAS  PubMed  Google Scholar 

  14. Mehta, A.K. & Ticku, M.K. An update on GABAA receptors. Brain Res. Rev. 29, 196–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Moss, S.J. & Smart, T.G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Saxena, N.C. & MacDonald, R.L. Properties of putative cerebellar y-Aminobutyric acid A receptor isoforms. Mol. Pharmacol. 49, 567–579 (1996).

    CAS  PubMed  Google Scholar 

  17. Krishek, B.J., Moss, S.J. & Smart, T.G. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors. J. Physiol. 507, 639–652 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whiting, P.J. et al. Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027–6037 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Celentano, J.J., Gyenes, M., Gibbs, T.T. & Farb, D.H. Negative modulation of the γ-aminobutyric acid response by extracellular zinc. Mol. Pharmacol. 40, 766–773 (1991).

    CAS  PubMed  Google Scholar 

  20. Legendre, P. & Westbrook, G.L. Noncompetitive inhibition of γ-Aminobutyric acidA channels by Zn. Mol. Pharmacol. 39, 267–274 (1991).

    CAS  PubMed  Google Scholar 

  21. Gingrich, K.J. & Burkat, P.M. Zn2+ inhibition of recombinant GABAA receptors: an allosteric, state-dependent mechanism determined by the gamma-subunit. J. Physiol. 506, 609–625 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vallee, B.L. & Auld, D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Auld, D.S. Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Wooltorton, J.R., McDonald, B.J., Moss, S.J. & Smart, T.G. Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of β subunits. J. Physiol. 505, 633–640 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horenstein, J. & Akabas, M.H. Location of a high affinity Zn2+ binding site in the channel of α1β1 γ-aminobutyric acidA receptors. Mol. Pharmacol. 53, 870–877 (1998).

    CAS  PubMed  Google Scholar 

  26. Dunne, E.L. et al. An N-terminal histidine regulates Zn2+ inhibition on the murine GABAA receptor β3 subunit. Br. J. Pharmacol. 137, 29–38 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barnard, E.A., Darlison, M.G. & Seeburg, P. Molecular biology of GABAA receptor: the receptor/channel superfamily. Trends Neurosci. 10, 502–509 (1987).

    Article  CAS  Google Scholar 

  28. Wang, T.-L., Hackam, A., Guggino, W.B. & Cutting, G.R. A single histidine residue is essential for zinc inhibition of GABA p1 receptors. J. Neurosci. 15, 7684–7691 (1996).

    Article  Google Scholar 

  29. Wooltorton, J.R., Moss, S.J. & Smart, T.G. Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors. Eur. J. Neurosci. 9, 2225–2235 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Horenstein, J., Wagner, D.A., Czajkowski, C. & Akabas, M.H. Protein mobility and GABA-induced conformational changes in GABAA receptor pore-lining M2 segment. Nat. Neurosci. 4, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nagaya, N. & MacDonald, R.L. Two γ2L subunit domains confer low Zn2+ sensitivity to ternary GABAA receptors. J. Physiol. 532, 17–30 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Farrar, S.J., Whiting, P.J., Bonnert, T.P. & McKernan, R.M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100–10104 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Newell, J.G. & Dunn, S.M. Functional consequences of the loss of high affinity agonist binding to gamma-aminobutyric acid type-A receptors. Implications for receptor desensitization. J. Biol. Chem. 277, 21423–21430 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Amin, J. & Weiss, D.S. GABAA receptor needs two homologous domains of the β-subunit for activation by GABA but not by pentobarbital. Nature 366, 565–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, G.B. & Olsen, R.W. Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Wagner, D.A. & Czajkowski, C. Structure and dynamics of the GABA binding pocket: a narrowing cleft that constricts during activation. J. Neurosci. 21, 67–74 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boileau, A.J. & Czajkowski, C. Identification of transduction elements for benzodiazepine modulation of the GABAA receptor: three residues are required for allosteric coupling. J. Neurosci. 19, 10213–10220 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lynch, J.W. et al. Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO J. 16, 110–120 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O'Shea, S.M. & Harrison, N.L. Arg274 and Leu277 of the γ-aminobutyric acid type A receptor α 2 subunit define agonist efficacy and potency. J. Biol. Chem. 275, 22764–22768 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Fisher, J.L. & MacDonald, R.L. The role of an α subtype M2-M3 His in regulating inhibition of GABAA receptor current by zinc and other divalent cations. J. Neurosci. 18, 2944–2953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cromer, B.A., Morton, C.J. & Parker, M.W. Anxiety over GABAA receptor structure relieved by AChBP. Trends Biochem. Sci. 27, 280–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Pawelzik, H., Bannister, A.P., Deuchars, J., Ilia, M. & Thomson, A.M. Modulation of bistratified cell IPSPs and basket cell IPSPs by pentobarbitone sodium, diazepam and Zn2+: dual recordings in slices of adult rat hippocampus. Eur. J. Neurosci. 11, 3552–3564 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Z., Danscher, G., Kim, Y.K., Dahlstrom, A. & Mook Jo, S. Inhibitory zinc-enriched terminals in the mouse cerebellum: double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci. Lett. 321, 37–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Sieghart, W. & Sperk, G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2, 795–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Brickley, S.G., Cull-Candy, S.G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19, 2960–2973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor, P.M. et al. Identification of residues within GABAA receptor alpha subunits that mediate specific assembly with receptor beta subunits. J. Neurosci. 20, 1297–1306 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, M. & Akabas, M.H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor alpha1 subunit. J. Gen. Physiol. 107, 195–205 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (UK). E.L.D. was a University of London Maplethorpe Research Fellow. We thank P. Thomas and P. Miller for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G. Smart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Schematic model of Zn2+ inhibition on the GABAA receptor. The α1β3 and α1β3γ2 GABAA receptors are viewed as plans and also as transected sections that span the membrane. The plan view depicts the interfacial nature of the GABA, benzodiazepine (BZ) and Zn2+ binding sites where they are intact (black spheres) or disrupted (shaded spheres). In the transected views, the location of receptor subunit interfaces, the GABA binding site and the determinants of Zn2+ potency (shaded ovals) were derived by comparison with the AChBP30. The GABA and BZ binding sites, and the domains delineated by α1E122,D123, α1E137,H141, and β3E182, are located externally on the receptor (solid lines, shown also on the oblique side of the receptor as broken lines) in contrast to the channel mouth location of H267 and E270 in the β3 subunit. The three postulated types of Zn2+ binding site, formed by H267 and E270, and by E137, H141 and E182, act in a concerted, allosteric fashion to inhibit receptor function. The channel site will be severely disrupted by introduction of γ2 subunits. (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosie, A., Dunne, E., Harvey, R. et al. Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 6, 362–369 (2003). https://doi.org/10.1038/nn1030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing