Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive

Abstract

Dopamine (DA) is required for hippocampal-dependent memory and long-term potentiation (LTP) at CA1 Schaffer collateral (SC) synapses. It is therefore surprising that exogenously applied DA has little effect on SC synapses, but suppresses CA1 perforant path (PP) inputs. To examine DA actions under more physiological conditions, we used optogenetics to release DA from ventral tegmental area inputs to hippocampus. Unlike exogenous DA application, optogenetic release of DA caused a bidirectional, activity-dependent modulation of SC synapses, with no effect on PP inputs. Low levels of DA release, simulating tonic DA neuron firing, depressed the SC response through a D4 receptor–dependent enhancement of feedforward inhibition mediated by parvalbumin-expressing interneurons. Higher levels of DA release, simulating phasic firing, increased SC responses through a D1 receptor–dependent enhancement of excitatory transmission. Thus, tonic-phasic transitions in DA neuron firing in response to motivational demands may cause a modulatory switch from inhibition to enhancement of hippocampal information flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DA bath application and VTA/SNpC axon stimulation suppress distinct input pathways to CA1.
Figure 2: DA release from VTA/SNpC fibers suppresses SC-evoked depolarization of CA1 PNs by activating D4 receptors.
Figure 3: VTA and SNpC photostimulation suppresses the SC-evoked depolarization of CA1 PNs by enhancing FFI.
Figure 4: PV+ INs mediate the effect of DA release from VTA and SNpC inputs to inhibit the SC-evoked PSP.
Figure 5: Photostimulation of VTA and SNpC afferents enhances the SC-evoked EPSP in PV+ INs.
Figure 6: Repeated photostimulation of VTA and SNpC afferents enhances the SC-evoked PSP in CA1 PNs by activating D1-type receptors.
Figure 7: Pharmacological sensitivity of the effect of DA release on the SC-evoked PSP using 25 bursts of photostimulation.
Figure 8: Fictive tonic and phasic optogenetic stimulation suppresses and enhances the SC-evoked PSP, respectively.

Similar content being viewed by others

References

  1. Faure, A., Haberland, U., Conde, F. & El Massioui, N. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J. Neurosci. 25, 2771–2780 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lisman, J.E. & Grace, A.A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    CAS  PubMed  Google Scholar 

  3. Bethus, I., Tse, D. & Morris, R.G. Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor–dependent paired associates. J. Neurosci. 30, 1610–1618 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossato, J.I., Bevilaqua, L.R., Izquierdo, I., Medina, J.H. & Cammarota, M. Dopamine controls persistence of long-term memory storage. Science. 325, 1017–1020 (2009).

    CAS  PubMed  Google Scholar 

  5. Wilkerson, A. & Levin, E.D. Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience 89, 743–749 (1999).

    CAS  PubMed  Google Scholar 

  6. McNamara, C.G., Tejero-Cantero, A., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Otmakhova, N.A. & Lisman, J.E. Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J. Neurosci. 19, 1437–1445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito, H.T. & Schuman, E.M. Frequency-dependent signal transmission and modulation by neuromodulators. Front. Neurosci. 2, 138–144 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, Y.Y. & Kandel, E.R. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 92, 2446–2450 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Swanson, L.W. The projections of the ventral tegmental area and adjacent regions—a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353 (1982).

    CAS  PubMed  Google Scholar 

  11. Gasbarri, A., Packard, M.G., Campana, E. & Pacitti, C. Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res. Bull. 33, 445–452 (1994).

    CAS  PubMed  Google Scholar 

  12. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  13. Sulzer, D. et al. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18, 4588–4602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon, O.B. et al. Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc. Natl. Acad. Sci. USA 105, 15587–15592 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tritsch, N.X., Ding, J.B. & Sabatini, B.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Defagot, M.C., Malchiodi, E.L., Villar, M.J. & Antonelli, M.C. Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Brain Res. Mol. Brain Res. 45, 1–12 (1997).

    CAS  PubMed  Google Scholar 

  17. Buzsáki, G. Feedforward Inhibition in the hippocampal formation. Prog. Neurobiol. 22, 131–153 (1984).

    PubMed  Google Scholar 

  18. Hu, H., Gan, J. & Jonas, P. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014).

    PubMed  Google Scholar 

  19. Mrzljak, L. et al. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381, 245–248 (1996).

    CAS  PubMed  Google Scholar 

  20. Andersson, R.H. et al. Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc. Natl. Acad. Sci. USA 109, 13118–13123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Magnus, C.J. et al. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333, 1292–1296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Basu, J. et al. A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow. Neuron 79, 1208–1221 (2013).

    CAS  PubMed  Google Scholar 

  23. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    PubMed  PubMed Central  Google Scholar 

  24. Armstrong, C. & Soltesz, I. Basket cell dichotomy in microcircuit function. J. Physiol. (Lond.) 590, 683–694 (2012).

    CAS  Google Scholar 

  25. Nissen, W., Szabo, A., Somogyi, J., Somogyi, P. & Lamsa, K.P. Cell type–specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor. J. Neurosci. 30, 1337–1347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuen, E.Y., Zhong, P. & Yan, Z. Homeostatic regulation of glutamatergic transmission by dopamine D4 receptors. Proc. Natl. Acad. Sci. USA 107, 22308–22313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gasbarri, A., Sulli, A., Innocenzi, R., Pacitti, C. & Brioni, J.D. Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 74, 1037–1044 (1996).

    CAS  PubMed  Google Scholar 

  28. Wang, L.P. et al. NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron 72, 1055–1066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuxe, K. et al. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90, 82–100 (2010).

    CAS  PubMed  Google Scholar 

  30. Smith, C.C. & Greene, R.W. CNS dopamine transmission mediated by noradrenergic innervation. J. Neurosci. 32, 6072–6080 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu, K.S. Characterization of dopamine receptors mediating inhibition of excitatory synaptic transmission in the rat hippocampal slice. J. Neurophysiol. 76, 1887–1895 (1996).

    CAS  PubMed  Google Scholar 

  32. Gainetdinov, R.R., Premont, R.T., Bohn, L.M., Lefkowitz, R.J. & Caron, M.G. Desensitization of G protein–coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144 (2004).

    CAS  PubMed  Google Scholar 

  33. Tritsch, N.X. & Sabatini, B.L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bolton, M.M., Pittman, A.J. & Lo, D.C. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J. Neurosci. 20, 3221–3232 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zakharenko, S.S. et al. Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1–CA3 synapses. Neuron 39, 975–990 (2003).

    CAS  PubMed  Google Scholar 

  36. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal-activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    CAS  PubMed  Google Scholar 

  37. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    CAS  PubMed  Google Scholar 

  38. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Losonczy, A., Zemelman, B.V., Vaziri, A. & Magee, J.C. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 13, 967–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Murray, A.J. et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat. Neurosci. 14, 297–299 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Glickfeld, L.L., Atallah, B.V. & Scanziani, M. Complementary modulation of somatic inhibition by opioids and cannabinoids. J. Neurosci. 28, 1824–1832 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lapray, D. et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat. Neurosci. 15, 1265–1271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lisman, J.E. & Otmakhova, N.A. Storage, recall and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11, 551–568 (2001).

    CAS  PubMed  Google Scholar 

  45. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    CAS  PubMed  Google Scholar 

  46. Grace, A.A., Floresco, S.B., Goto, Y. & Lodge, D.J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007).

    CAS  PubMed  Google Scholar 

  47. Kawaguchi, Y. & Hama, K. Fast-spiking nonpyramidal cells in the hippocampal CA3 region, dentate gyrus and subiculum of rats. Brain Res. 425, 351–355 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Basu (New York University) for her theoretical and technical support with experiments and for helpful comments on the manuscript. We are grateful to S. Sternson for providing the PSEM compound and PSAM construct (Janelia Research Campus, Howard Hughes Medical Institute). The work was supported by funding from the Howard Hughes Medical Institute and a grant from the US National Institutes of Health (5T32MH015174).

Author information

Authors and Affiliations

Authors

Contributions

Z.B.R. conducted the electrophysiological experiments. Z.B.R. and S.C. performed the immunohistochemistry. Z.B.R. and S.A.S. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Steven A Siegelbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 DA release does not induce rapid changes in intrinsic membrane properties

(a) Schematic of the light burst, which consisted of 3 pulses (5 ms each) with a 10 ms interpulse interval (66.7 Hz). (b) Input resistance before and after photostimulation. Pre = five minutes prior to the light burst protocol. Post = 15 minutes following a single light burst. (c) Input resistance before and after 20 ΩM DA bath application.

Supplementary Figure 2 IPSCs evoked by direct stimulation of GABAergic interneurons throughout CA1 are unaffected by DA release.

(a) Effects of DA release on direct inhibition of CA1 PNs as measured by the IPSC recorded under whole cell voltage clamp at + 10 mV in the presence of NBQX and D-APV. (b) Comparison of the population mean direct IPSCs recorded from CA1 PNs in response to electrical stimulation using an electrode placed in the indicated four layers of CA1, plus the feedforward IPSC evoked by SC stimulation with excitation intact. For direct inhibition experiments, NBQX and D-AP5 were included in the bath solution. Photostimulation of DA release caused no statistically significant change in the direct IPSCs evoked with stimulating electrode in SO. In contrast DA release significantly increased the feedforward IPSC (P values?). (c) Current recording in CA1 pyramidal neurons at a holding potential of +10 mV. Photostimulation protocol is equivalent to the one used in the previous current clamp experiments and shown to scale.

Supplementary Figure 3 Prolonged optogenetic stimulation has no effect on feedforward IPSC.

(a) Experimental configuration. (b) Effect of prolonged optogenetic stimulation on the SC-evoked IPSC measured in voltage clamp at +10 mV as in Figure 3. Closed blue circles: effect of single burst stimulation on the mean IPSC peak amplitude normalized to the baseline. Closed black circles: effect of prolonged burst stimulation.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosen, Z., Cheung, S. & Siegelbaum, S. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 18, 1763–1771 (2015). https://doi.org/10.1038/nn.4152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing