Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons

Abstract

The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses in the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways. Most GCs receive inputs from different modalities, which, when coactivated, produced enhanced GC firing rates and distinct first spike latencies. Thus, pathway-specific synaptic response properties permit temporal coding of correlated multisensory inputs by single GCs, thereby enriching sensory representation and facilitating pattern separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of MF-GC input types using k-means clustering analysis of EPSC properties.
Figure 2: Multiple probability fluctuation analysis reveals quantal parameters contributing to synaptic diversity.
Figure 3: Pathway-specific MF-GC synaptic properties.
Figure 4: Sensory-specific MF-GC synaptic properties recorded in vivo.
Figure 5: Multimodal convergence onto single GCs.
Figure 6: Input-specific synaptic integration in single GCs.
Figure 7: Model GCs respond to coactivation of multiple sensory pathways with specific onset delays.
Figure 8: Delay coding enhances pattern decorrelation.

Similar content being viewed by others

References

  1. Fetsch, C.R., DeAngelis, G.C. & Angelaki, D.E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14, 429–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Cullen, K.E. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 35, 185–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, X., Leischner, U., Rochefort, N.L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Olcese, U., Iurilli, G. & Medini, P. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79, 579–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, N.L. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Alvarado, J.C., Stanford, T.R., Rowland, B.A., Vaughan, J.W. & Stein, B.E. Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs. J. Neurosci. 29, 6580–6592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reig, R. & Silberberg, G. Multisensory integration in the mouse striatum. Neuron 83, 1200–1212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yakusheva, T.A., Blazquez, P.M., Chen, A. & Angelaki, D.E. Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. J. Neurosci. 33, 15145–15160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stein, B.E. & Stanford, T.R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Chacron, M.J., Toporikova, N. & Fortune, E.S. Differences in the time course of short-term depression across receptive fields are correlated with directional selectivity in electrosensory neurons. J. Neurophysiol. 102, 3270–3279 (2009).

    Article  PubMed  Google Scholar 

  11. Katz, Y., Heiss, J.E. & Lampl, I. Cross-whisker adaptation of neurons in the rat barrel cortex. J. Neurosci. 26, 13363–13372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holderith, N. et al. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat. Neurosci. 15, 988–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stoelzel, C.R., Bereshpolova, Y., Gusev, A.G. & Swadlow, H.A. The impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. J. Neurosci. 28, 5018–5028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sherman, S.M. & Guillery, R.W. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).

    Article  PubMed  Google Scholar 

  15. Mauk, M.D. & Buonomano, D.V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Albus, J. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  17. Billings, G., Piasini, E., Lorincz, A., Nusser, Z. & Silver, R.A. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83, 960–974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).

    Article  CAS  Google Scholar 

  19. Buonomano, D.V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Sargent, P.B., Saviane, C., Nielsen, T.A., DiGregorio, D.A. & Silver, R.A. Rapid vesicular release, quantal variability and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J. Neurosci. 25, 8173–8187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arenz, A., Silver, R.A., Schaefer, A.T. & Margrie, T.W. The contribution of single synapses to sensory representation in vivo. Science 321, 977–980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jörntell, H. & Ekerot, C.F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rothman, J.S., Cathala, L., Steuber, V. & Silver, R.A. Synaptic depression enables neuronal gain control. Nature 457, 1015–1018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saviane, C. & Silver, R.A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Barmack, N.H. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res. Bull. 60, 511–541 (2003).

    Article  PubMed  Google Scholar 

  26. Dale, A. & Cullen, K.E. The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion. J. Neurophysiol. 109, 1900–1911 (2013).

    Article  PubMed  Google Scholar 

  27. Sawtell, N.B. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 66, 573–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, C.C. et al. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife 2, e00400 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blackman, A.V., Abrahamsson, T., Costa, R.P., Lalanne, T. & Sjostrom, P.J. Target-cell-specific short-term plasticity in local circuits. Front. Synaptic Neurosci. 5, 11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duguid, I., Branco, T., London, M., Chadderton, P. & Hausser, M. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32, 11132–11143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, H.J., Lasker, D.M. & Minor, L.B. Static and dynamic discharge properties of vestibular-nerve afferents in the mouse are affected by core body temperature. Exp. Brain Res. 200, 269–275 (2010).

    Article  PubMed  Google Scholar 

  32. Sadeghi, S.G., Chacron, M.J., Taylor, M.C. & Cullen, K.E. Neural variability, detection thresholds, and information transmission in the vestibular system. J. Neurosci. 27, 771–781 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Medrea, I. & Cullen, K.E. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. J. Neurophysiol. 110, 2704–2717 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Medina, J.F. & Mauk, M.D. Computer simulation of cerebellar information processing. Nat. Neurosci. 3, 1205–1211 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sola, E., Prestori, F., Rossi, P., Taglietti, V. & D'Angelo, E. Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J. Physiol. (Lond.) 557, 843–861 (2004).

    Article  CAS  Google Scholar 

  37. Barmack, N.H. & Yakhnitsa, V. Functions of interneurons in mouse cerebellum. J. Neurosci. 28, 1140–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arenz, A., Bracey, E.F. & Margrie, T.W. Sensory representations in cerebellar granule cells. Curr. Opin. Neurobiol. 19, 445–451 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Laurens, J., Meng, H. & Angelaki, D.E. Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 80, 1508–1518 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Brooks, J.X. & Cullen, K.E. The primate cerebellum selectively encodes unexpected self-motion. Curr. Biol. 23, 947–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kennedy, A. et al. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat. Neurosci. 17, 416–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steuber, V. et al. Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54, 121–136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Babadi, B. & Sompolinsky, H. Sparseness and expansion in sensory representations. Neuron 83, 1213–1226 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. van Dorp, S. & De Zeeuw, C.I. Variable timing of synaptic transmission in cerebellar unipolar brush cells. Proc. Natl. Acad. Sci. USA 111, 5403–5408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bengtsson, F. & Jorntell, H. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc. Natl. Acad. Sci. USA 106, 2389–2394 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Prsa, M., Dash, S., Catz, N., Dicke, P.W. & Thier, P. Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J. Neurosci. 29, 250–262 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Díaz-Quesada, M., Martini, F.J., Ferrati, G., Bureau, I. & Maravall, M. Diverse thalamocortical short-term plasticity elicited by ongoing stimulation. J. Neurosci. 34, 515–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barry, C. & Burgess, N. Neural mechanisms of self-location. Curr. Biol. 24, R330–R339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chadderton, P., Schaefer, A.T., Williams, S.R. & Margrie, T.W. Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nat. Rev. Neurosci. 15, 71–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Silver, R.A., Cull-Candy, S.G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996).

    Article  CAS  Google Scholar 

  52. D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. (Lond.) 484, 397–413 (1995).

    Article  CAS  Google Scholar 

  53. Cathala, L., Brickley, S., Cull-Candy, S. & Farrant, M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J. Neurosci. 23, 6074–6085 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Traynelis, S.F. Software-based correction of single compartment series resistance errors. J. Neurosci. Methods 86, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Hartigan, J.A. Clustering algorithms. (Wiley, 1973).

  56. Silver, R.A. Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J. Neurosci. Methods 130, 127–141 (2003).

    Article  PubMed  Google Scholar 

  57. Paxinos, F. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates 2nd edn. (Gulf Professional Publishing, 2004).

  58. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Calabrese, D.R. & Hullar, T.E. Planar relationships of the semicircular canals in two strains of mice. J. Assoc. Res. Otolaryngol. 7, 151–159 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cathala, L., Misra, C. & Cull-Candy, S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J. Neurosci. 20, 5899–5905 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. DiGregorio, D.A., Nusser, Z. & Silver, R.A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Jortner, R.A., Farivar, S.S. & Laurent, G. A simple connectivity scheme for sparse coding in an olfactory system. J. Neurosci. 27, 1659–1669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wiechert, M.T., Judkewitz, B., Riecke, H. & Friedrich, R.W. Mechanisms of pattern decorrelation by recurrent neuronal circuits. Nat. Neurosci. 13, 1003–1010 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Lepousez and N. Torquet for their advice on performing stereotaxic injections of viral vectors and the laboratory of U. Maskos for access to the stereotaxic equipment. We thank P. Caroni (Friedrich Miescher Institute for Biomedical Research, Basel) for providing the transgenic mouse line Thy1-mGFP (line 17) and Jonathan Bradley for establishing the colony and initial characterization of GFP expression in the cerebellar vermis. We thank C. Saint-Cloment for managing the mouse colonies and performing some stereotaxic injections. We thank J. Rothman (University College London) for providing routines for the synaptic and integrate-and-fire computational models. Finally, we would like to thank M. Albert, B. Barbour, D. Brody, L. Cathala, J. Dittman, D. Feldman, T. Mrsic-Flogel, C. Lena, G. Lepousez, A. Nissant, N. Rebola, A. Silver and A. Tran-Van-Minh for comments on the manuscript. This work was supported by grants from the French National Agency for Research (ANR-2010-BLANC-1411, ANR-13-SAMA-0006-05, ANR-07-BSYS-010 VESTICODE, ANR-13-BSV4-0016) Fondation de Recherche Medicale (Team grant) and the European Union FP6 specific targeted project (LSHM-CT-2007-037765). T.W.M. is a Wellcome Trust investigator and is supported by the UK Medical Research Council (MC_U1175975156).

Author information

Authors and Affiliations

Authors

Contributions

F.P.C., A.A., T.W.M. and D.A.D. conceived and designed experiments. F.P.C. performed in vitro experiments and analysis and A.A. performed in vivo experiments and analysis. M.T.W. performed pattern decorrelation and linear classifier modeling. F.P.C., A.A., M.T.W., T.W.M. and D.A.D. wrote the manuscript.

Corresponding author

Correspondence to David A DiGregorio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 MF-GC EPSC metrics vary greatly between lobule X MF-GC synaptic connections but are correlated with each other.

(a) Broad distributions of EPSC mean peak amplitude, coefficient of variation of the peak amplitude (CV) and paired-pulse ratio (PPR) at 100 Hz stimulation from 83 MF-GC synaptic connections using the blind stimulation protocol. Mean values are displayed with standard deviation. (b) Significant correlations were observed between all parameters (red line represents linear fit; p values calculated from Pearson correlation).

Supplementary Figure 2 Determination of the number of clusters for k-means cluster analysis.

(a) A K-Means clustering (KMC) analysis of EPSC metrics from 259 MF-GC synaptic connections when varying the number of clusters. The first principal component results from the negative correlation between peak amplitude vs. coefficient of variation (CV) and the paired-pulse ratio (PPR). The second principal component results from a positive correlation between peak amplitude and PPR. (b) Proportion of the total variance accounted for by progressively increasing numbers of clusters for peak amplitude (Amp), CV, PPR, and the average of all curves (gray). Using this curve we selected “bye eye” the optimal number of clusters to be five (red dot), corresponding to the number of clusters beyond which there was no substantial increase in the accounted variance. The lack of increased slope was estimated using the slope (tangent lines) of the curve beyond 5 input groups.

Supplementary Figure 3 The vast majority of fluorescent MFs in lobule X of Thy1-mGFP (line 17) transgenic mice arise from vestibular ganglion.

(a) 2PLSM image of a parasagittal slice of the cerebellum showing GFP expression in the GC layer. Image is a montage of tiled z-projection images. Magenta dotted region indicates lobule X of the vestibulo-cerebellum (VC). (b) Higher magnification image of the GC layer of VC showing that GFP is expressed in a subset of MFs (maximal intensity projection over 10 µm). (c) Dodt contrast (top) and fluorescence (bottom) images of brainstem nuclei known to project to VC. MVe: medial vestibular nucleus, PrH: nucleus prepositus hypoglossi, SpVe: spinal vestibular nucleus. Fluorescently labeled somata were observed only in the SpVe, but only comprised 30% of cell bodies. (d) 2PLSM image showing robust GFP expression in vestibular ganglion (VG) neurons (animal age: 7-10 days postnatal).

Supplementary Figure 4 Stereotaxic injections of AAV9-TurboRFP vectors in the medial vestibular and prepositus hypoglossi nuclei.

(a) Schematic drawing of a coronal section of cerebellum and brainstem showing the site of viral transduction, in this case the medial vestibular nucleus (MVe) which receives primary vestibular afferents from the vestibular ganglion (VG) and sends secondary vestibular MFs to lobule X of VC. (b) Confocal images of coronal brain slices showing RFP expression restricted to brainstem regions below the 4th ventricle. The brain slice is outlined with a white dashed line. (c) RFP expression from precerebellar afferents is restricted to lobule IX and X of the cerebellum. (d) Higher magnification view of brainstem regions at the floor of the 4th ventricle. Neurons expressing RFP are restricted to the MVe. LVe: lateral vestibular nucleus, and PrH: nucleus prepositus hypoglossi. (e,f) Neurons in MVe and their MF afferents (maximal intensity projection over 10 µm) in VC, respectively. (g-l) Same as for a-f for viral injections performed in PrH.

Supplementary Figure 5 Two-photon fluorescence-targeted stimulation of individual MFs.

(a) To position the stimulating electrode near labeled MFs, two-photon laser scanning microscopy images of a fluorescent MFs (green) were superimposed with Dodt-contrast. (Left) The stimulation pipette is initially placed close to the MF axon (star 1). The pipette is then placed progressively further away. (Right) Last position (star 4) of the stimulation pipette. (b) Superposition of 2PLSM images of the same fluorescent MF and connected GC filled with Alexa 594 (magenta). The distance from the tip of the stimulation pipette to the axon was measured and used as the radius value. The circles represent the different areas of stimulation with corresponding minimal voltages values (+5 volts to insure reliable stimulation). (c) Amplitude of evoked EPSCs did not change with either increased distance from the axon or increasing voltage stimulations, demonstrating that no additional MFs connected to the patched GC were stimulated. (d) The stimulus voltage was always positively correlated with distance from the targeted axon (values from 3 different recordings in gray and their average in black), supporting stimulation of the targeted axon. The gray box corresponds to the range of voltages used in 2PLSM-targeted experiments, indicating an average stimulation radius below 5 μm, sufficiently small to avoid stimulation of more than one MF connected to the same GC.

Supplementary Figure 6 Alterations in EPSC amplitude during visual stimuli are not detectable.

Plot of the peak amplitudes normalized to the peak of the 1st EPSC for the first 20 successive EPSCs evoked during the presentation of visual gratings in the preferred direction. Values from individual cells (n = 10) are represented by gray traces (corresponding to the left axis, note that in some cells EPSC trains contained < 20 single EPSCs), while the average values from consecutive EPSCs across cells are shown in black with SEM. Trends in EPSC amplitude during visual stimuli were assessed with Spearman’s rank order stability test. We observed no detectable trend (red line, p > 0.05). The green curve shows the median interval between the 1st EPSC and each subsequent event (ms, right axis), averaged over all cells.

Supplementary Figure 7 Synaptic and integrate-and-fire model replicates input type-specific GCs responses.

(a) Synaptic and integrate-and-fire (sIAF) model simulations of voltage responses to synapses modeling each input type are similar to experimental current-clamp traces. Synapses were stimulated 30 times at 100 Hz for each input type in both simulations and experiments. Each input type was modeled by adjusting the synaptic conductance parameters to fit the synaptic current dynamics observed experimentally (EPSC kinetics and short-term plasticity; see Supplementary Table 1). (b) Simulated (dashed line) and experimental (solid line) input/output (I/O) relationships for each input group. (c) Simulated delays between synaptic stimulation and the first spike (dashed lines) match experimental delays (solid lines) for different input groups. (d) The simulation also predicts GC responses to simultaneous double input stimulation. We show driver (group 2) and supporting input (group 4) with in vivo-like tonic firing, stimulated individually and simultaneously. Stimulation frequencies are indicated in the underlying colored boxes. (e) Combination-specific first spike latencies are well matched between data and simulations. (f) Simulated I/Os from individual input groups (dashed gray curves) and from the driver inputs (G1, 2, or 5) combined with the supporting input (G4) driven at different frequencies (indicated on the right hand side). Note the prominent multisensory enhancement in GC output.

Supplementary Figure 8 Delay coding model outperforms thresholding model when input patterns are strongly correlated.

Graph shows the difference in output correlation between thresholding and delay coding models for different delays as a function of input correlation. Positive values indicate better performance of delay coding. For more similar patterns (higher input correlation), the delay coding model shows a stronger decorrelation relative to the thresholding model.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 6080 kb)

Supplementary Methods Checklist (PDF 218 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabrol, F., Arenz, A., Wiechert, M. et al. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat Neurosci 18, 718–727 (2015). https://doi.org/10.1038/nn.3974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing