Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What does gamma coherence tell us about inter-regional neural communication?

Abstract

Neural oscillations have been measured and interpreted in multitudinous ways, with a variety of hypothesized functions in physiology, information processing and cognition. Much attention has been paid in recent years to gamma-band (30–100 Hz) oscillations and synchrony, with an increasing interest in 'high gamma' (>100 Hz) signals as mesoscopic measures of inter-regional communication. The biophysical origins of the measured variables are often difficult to precisely identify, however, making their interpretation fraught with pitfalls. Here we discuss how measurements of inter-regional gamma coherence can be prone to misinterpretation and suggest strategies for deciphering the roles that synchronized oscillations across brain networks may play in neural function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An idealized experimental layout to identify communication by gamma frequency coupling within and across networks.

Katie Vicari/Nature Publishing Group

Figure 2: Fast synaptic patterns delivered to the dendrites may not propagate to the soma.
Figure 3: Dendritic target domains are characterized by gamma coherence.
Figure 4: The origins of gamma LFP patterns can be revealed with simultaneous multisite recordings of LFP and spiking activity.
Figure 5: Interhemispheric, zero-phase-lag coherence of gamma oscillations.

Similar content being viewed by others

References

  1. Varela, F., Lachaux, J.P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Salinas, E. & Sejnowski, T.J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Engel, A.K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Histed, M.H. & Maunsell, J.H.R. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc. Natl. Acad. Sci. USA 111, E178–E187 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Buzsáki, G., Anastassiou, C.A. & Koch, C. The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Einevoll, G.T., Kayser, C., Logothetis, N.K. & Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lisman, J.E. & Jensen, O. The theta-gamma neural code. Neuron 77, 1002–1016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crone, N.E., Sinai, A. & Korzeniewska, A. High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res. 159, 275–295 (2006).

    Article  PubMed  Google Scholar 

  11. Canolty, R.T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colgin, L.L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gaona, C.M. et al. Nonuniform high-gamma (60–500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J. Neurosci. 31, 2091–2100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Atallah, B.V. & Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62, 566–577 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buzsáki, G., Leung, L.-W.S. & Vanderwolf, C.H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139–171 (1983).

    Article  PubMed  Google Scholar 

  16. Branco, T. & Häusser, M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69, 885–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vaidya, S.P. & Johnston, D. Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nat. Neurosci. 16, 1812–1820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schomburg, E.W., et al. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84, 470–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berényi, A. et al. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111, 1132–1149 (2014).

    Article  PubMed  Google Scholar 

  20. Lasztóczi, B. & Klausberger, T. Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 81, 1126–1139 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schomburg, E.W., Anastassiou, C.A., Buzsáki, G. & Koch, C. The spiking component of oscillatory extracellular potentials in the rat hippocampus. J. Neurosci. 32, 11798–11811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N.E. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Csicsvari, J., Jamieson, B., Wise, K.D. & Buzsáki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto, J., Suh, J., Takeuchi, D. & Tonegawa, S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157, 845–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. USA 111, 14332–14341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Montgomery, S.M. & Buzsàki, G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci. USA 104, 14495–14500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J. & Desimone, R. Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. USA 108, 11262–11267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roberts, M.J. et al. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron 78, 523–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, M.A., Jia, X., Zandvakili, A. & Kohn, A. Laminar dependence of neuronal correlations in visual cortex. J. Neurophysiol. 109, 940–947 (2013).

    Article  PubMed  Google Scholar 

  31. Buzsáki, G. et al. Hippocampal network patterns of activity in the mouse. Neuroscience 116, 201–211 (2003).

    Article  PubMed  Google Scholar 

  32. Ray, S. & Maunsell, J.H.R. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Belluscio, M.A., Mizuseki, K., Schmidt, R., Kempter, R. & Buzsáki, G. Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. J. Neurosci. 32, 423–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zanos, T.P., Mineault, P.J. & Pack, C.C. Removal of spurious correlations between spikes and local field potentials. J. Neurophysiol. 105, 474–486 (2011).

    Article  PubMed  Google Scholar 

  35. Fernández-Ruiz, A., Makarov, V.A., Benito, N. & Herreras, O. Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units. J. Neurosci. 32, 5165–5176 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Gregoriou, G.G., Gotts, S.J., Zhou, H. & Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engel, A.K., Konig, P., Kreiter, A. & Singer, W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252, 1177–1179 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Jia, X., Tanabe, S. & Kohn, A. γ and the coordination of spiking activity in early visual cortex. Neuron 77, 762–774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  PubMed  Google Scholar 

  42. Bishop, G.H. Cyclic changes in excitability of the optic pathway of the rabbit. Am. J. Physiol. 103, 213–224 (1933).

    Article  Google Scholar 

  43. Akam, T. & Kullmann, D.M. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat. Rev. Neurosci. 15, 111–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bastos, A.M., Vezoli, J. & Fries, P. Communication through coherence with inter-areal delays. Curr. Opin. Neurobiol. 31C, 173–180 (2014).

    Google Scholar 

  45. Zemankovics, R., Veres, J.M., Oren, I. & Hájos, N. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1. J. Neurosci. 33, 12337–12351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brunet, N.M. et al. Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc. Natl. Acad. Sci. USA 111, 3626–3631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray, S. & Maunsell, J.H.R. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67, 885–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tort, A.B.L., Komorowski, R.W., Manns, J.R., Kopell, N.J. & Eichenbaum, H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 106, 20942–20947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cabral, H.O. et al. Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control. Neuron 81, 402–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Bieri, K.W., Bobbitt, K.N. & Colgin, L.L. Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 82, 670–681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Manning, J.R., Jacobs, J., Fried, I. & Kahana, M.J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kandel, A. & Buzsàki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J. Neurosci. 17, 6783–6797 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sullivan, D. et al. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J. Neurosci. 31, 8605–8616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mureşan, R.C., Jurjuţ, O.F., Moca, V.V., Singer, W. & Nikolić, D. The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. J. Neurophysiol. 99, 1333–1353 (2008).

    Article  PubMed  Google Scholar 

  56. Hasselmo, M.E., Bodelón, C. & Wyble, B.P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002).

    Article  PubMed  Google Scholar 

  57. Freund, T.F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsáki, G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64, 267–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stujenske, J.M., Likhtik, E., Topiwala, M.A. & Gordon, J.A. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron 83, 919–933 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vicente, R., Gollo, L.L., Mirasso, C.R., Fischer, I. & Pipa, G. Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. USA 105, 17157–17162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Whitham, E.M. et al. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin. Neurophysiol. 118, 1877–1888 (2007).

    Article  PubMed  Google Scholar 

  62. Kovach, C.K., Tsuchiya, N., Kawasaki, H. & Oya, H. Manifestation of ocular-muscle EMG contamination in human intracranial recordings. Neuroimage 54, 213–233 (2011).

    Article  PubMed  Google Scholar 

  63. Ledberg, A. & Robbe, D. Locomotion-related oscillatory body movements at 6–12 Hz modulate the hippocampal theta rhythm. PLoS ONE 6, e27575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Killian, N.J., Jutras, M.J. & Buffalo, E.A. A map of visual space in the primate entorhinal cortex. Nature 491, 761–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Srinath, R. & Ray, S. Effect of amplitude correlations on coherence in the local field potential. J. Neurophysiol. 112, 741–751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31C, 51–61 (2014).

    Google Scholar 

  67. Pereda, E., Quiroga, R.Q. & Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37 (2005).

    Article  PubMed  Google Scholar 

  68. Friston, K., Moran, R. & Seth, A.K. Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Börgers, C., Epstein, S. & Kopell, N.J. Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proc. Natl. Acad. Sci. USA 105, 18023–18028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Barbieri, F., Mazzoni, A., Logothetis, N.K., Panzeri, S. & Brunel, N. Stimulus dependence of local field potential spectra: experiment versus theory. J. Neurosci. 34, 14589–14605 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Fernández-Ruiz, K. Mizuseki, A. Berenyi and members of the Buzsáki laboratory for discussions and feedback. This work was supported by US National Institutes of Health grants (MH54671, MH102840), the Mather's Foundation, The Human Frontier Science Program and the US National Science Foundation (Temporal Dynamics of Learning Center Grant SBE 0542013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Buzsáki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzsáki, G., Schomburg, E. What does gamma coherence tell us about inter-regional neural communication?. Nat Neurosci 18, 484–489 (2015). https://doi.org/10.1038/nn.3952

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing