Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

State and location dependence of action potential metabolic cost in cortical pyramidal neurons

Abstract

Action potential generation and conduction requires large quantities of energy to restore Na+ and K+ ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na+/K+ charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location dependence of action potential efficiency.
Figure 2: Effect of membrane potential on Na+ and K+ flux during axonal action potentials.
Figure 3: Axonal K+ channels rapidly activate and deactivate.
Figure 4: An eight-gate axonal K+ model predicts a high channel density.
Figure 5: K+ channel inactivation regulates Na+/K+ charge separation.
Figure 6: Action potential metabolic cost is spatially heterogeneous.
Figure 7: Axonal Na+ channel inactivation is optimal for high-frequency action potentials.

Similar content being viewed by others

References

  1. Attwell, D. & Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Aiello, L. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article  Google Scholar 

  3. Crotty, P., Sangrey, T. & Levy, W.B. Metabolic energy cost of action potential velocity. J. Neurophysiol. 96, 1237–1246 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE 6, e17514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hodgkin, A. The optimum density of sodium channels in an unmyelinated nerve. Phil. Trans. R. Soc. Lond. B 270, 297–300 (1975).

    Article  CAS  Google Scholar 

  6. Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Levy, W.B. & Baxter, R.A. Energy efficient neural codes. Neural Comput. 8, 531–543 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. de Haas, V. & Vogel, W. Sodium and potassium currents recorded during an action potential. Eur. Biophys. J. 17, 49–51 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Frankenhaeuser, B. & Huxley, A.F. The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. (Lond.) 171, 302–315 (1964).

    Article  CAS  Google Scholar 

  10. Alle, H., Roth, A. & Geiger, J.R.P. Energy-efficient action potentials in hippocampal mossy fibers. Science 325, 1405–1408 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Carter, B.C. & Bean, B.P. Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 64, 898–909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sengupta, B., Stemmler, M., Laughlin, S.B. & Niven, J.E. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLOS Comput. Biol. 6, e1000840 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kole, M.H.P., Letzkus, J. & Stuart, G. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55, 633–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Shu, Y., Yu, Y., Yang, J. & McCormick, D.A. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc. Natl. Acad. Sci. USA 104, 11453–11458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geiger, J.R.P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kole, M.H. & Stuart, G.J. Signal processing in the axon initial segment. Neuron 73, 235–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Carter, B.C. & Bean, B.P. Incomplete inactivation and rapid recovery of voltage-dependent sodium channels during high-frequency firing in cerebellar Purkinje neurons. J. Neurophysiol. 105, 860–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  19. Cole, K.S. & Curtis, H.J. Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasenstaub, A., Otte, S., Callaway, E. & Sejnowski, T.J. Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl. Acad. Sci. USA 107, 12329–12334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lorincz, A. & Nusser, Z. Molecular identity of dendritic voltage-gated sodium channels. Science 328, 906–909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alle, H., Kubota, H. & Geiger, J.R. Sparse, but highly efficient, Kv3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J. Neurosci. 31, 8001–8012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zagotta, W.N., Hoshi, T. & Aldrich, R.W. Shaker potassium channel gating. III. Evaluation of kinetic models for activation. J. Gen. Physiol. 103, 321–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt-Hieber, C. & Bischofberger, J. Fast sodium channel gating supports localized and efficient axonal action potential initiation. J. Neurosci. 30, 10233–10242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Harris, J.J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oberlaender, M. et al. Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type–specific intracortical pathways for whisker motion and touch. Proc. Natl. Acad. Sci. USA 108, 4188–4193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oberlaender, M. et al. Cell type–specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex (2011).

  29. de Kock, C.P. & Sakmann, B. High frequency action potential bursts (>100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. J. Physiol. (Lond.) 586, 3353–3364 (2008).

    Article  CAS  Google Scholar 

  30. Raman, I.M. & Bean, B.P. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gittis, A.H., Moghadam, S.H. & du Lac, S. Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents. J. Neurophysiol. 104, 1625–1634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kole, M.H.P. First node of ranvier facilitates high-frequency burst encoding. Neuron 71, 671–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Popovic, M.A., Foust, A.J., Mccormick, D.A. & Zecevic, D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage-imaging study. J. Physiol. (Lond.) 589, 4167–4187 (2011).

    Article  CAS  Google Scholar 

  34. Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45, 405–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Schoppa, N.E. & Sigworth, F.J. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J. Gen. Physiol. 111, 313–342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Stühmer, W. et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 8, 3235–3244 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hopkins, W.F. Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 285, 1051–1060 (1998).

    CAS  PubMed  Google Scholar 

  39. Ogawa, Y. et al. Postsynaptic density 93 clusters Kv1 channels at axon initial segments independently of Caspr2. J. Neurosci. 28, 5731–5739 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rhodes, K.J. et al. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J. Neurosci. 17, 8246–8258 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, H., Kunkel, D.D., Schwartzkroin, P.A. & Tempel, B.L. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J. Neurosci. 14, 4588–4599 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lorincz, A. & Nusser, Z. Cell type–dependent molecular composition of the axon initial segment. J. Neurosci. 28, 14329–14340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niven, J.E. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Juusola, M., Robinson, H.P.C. & De Polavieja, G.G. Coding with spike shapes and graded potentials in cortical networks. Bioessays 29, 178–187 (2007).

    Article  PubMed  Google Scholar 

  45. Wang, S.S.-H. et al. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28, 4047–4056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kole, M.H.P. et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11, 178–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Hallermann, S. et al. Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68, 710–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carnevale, N.T. & Hines, M.L. The NEURON book (Cambridge University Press, Cambridge, 2005).

  49. Kole, M.H.P. & Stuart, G.J. Is action potential threshold lowest in the axon? Nat. Neurosci. 11, 1253–1255 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Mainen, Z.F. & Sejnowski, T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Awatramani, G.B., Price, G.D. & Trussell, L.O. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48, 109–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Christie, J.M., Chiu, D.N. & Jahr, C.E. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nat. Neurosci. 14, 62–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kole, M.H.P., Hallermann, S. & Stuart, G.J. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci. 26, 1677–1687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lohmann, H. & Rörig, B. Long-range horizontal connections between supragranular pyramidal cells in the extrastriate visual cortex of the rat. J. Comp. Neurol. 344, 543–558 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Guan, D., Tkatch, T., Surmeier, D.J., Armstrong, W.E. & Foehring, R.C. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 581, 941–960 (2007).

    Article  CAS  Google Scholar 

  56. Bekkers, J.M. & Delaney, A.J. Modulation of excitability by α-dendrotoxin–sensitive potassium channels in neocortical pyramidal neurons. J. Neurosci. 21, 6553–6560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keren, N., Bar-Yehuda, D. & Korngreen, A. Experimentally guided modeling of dendritic excitability in rat neocortical pyramidal neurones. J. Physiol. (Lond.) 587, 1413–1437 (2009).

    Article  CAS  Google Scholar 

  58. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, London, 1998).

  59. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Program (FP7/2007–2013)/ERC Grant agreement n° P261114 and from the Australian National Health and Medical Research Council (NHMRC) Project Grant n° 525437 to M.H.P.K. S.H. received funding from the Heisenberg Program of the German Research Foundation (HA 6386/1-1 and 2-1). The authors are grateful to Henrik Alle and Christoph Schmidt-Hieber for discussions on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and M.H.P.K. designed and conducted the experiments and analyzed data. C.P.J.d.K. provided the in vivo reconstructions. S.H., C.P.J.d.K., G.J.S. and M.H.P.K. wrote the paper.

Corresponding author

Correspondence to Maarten H P Kole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallermann, S., de Kock, C., Stuart, G. et al. State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat Neurosci 15, 1007–1014 (2012). https://doi.org/10.1038/nn.3132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing