Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gating and control of primary visual cortex by pulvinar

Abstract

The primary visual cortex (V1) receives its driving input from the eyes via the lateral geniculate nucleus (LGN) of the thalamus. The lateral pulvinar nucleus of the thalamus also projects to V1, but this input is not well understood. We manipulated lateral pulvinar neural activity in prosimian primates and assessed the effect on supra-granular layers of V1 that project to higher visual cortex. Reversibly inactivating lateral pulvinar prevented supra-granular V1 neurons from responding to visual stimulation. Reversible, focal excitation of lateral pulvinar receptive fields increased the visual responses in coincident V1 receptive fields fourfold and shifted partially overlapping V1 receptive fields toward the center of excitation. V1 responses to regions surrounding the excited lateral pulvinar receptive fields were suppressed. LGN responses were unaffected by these lateral pulvinar manipulations. Excitation of lateral pulvinar after LGN lesion activated supra-granular layer V1 neurons. Thus, lateral pulvinar is able to powerfully control and gate information outflow from V1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversibly inactivating lateral pulvinar almost abolishes visual responses in supra-granular layers of V1.
Figure 2: Gating of V1 output in the presence of LGN input.
Figure 3: The process of lateral pulvinar injection does not compromise the integrity of V1 measurements.
Figure 4: Exciting lateral pulvinar neurons responsive to a region boosts responses of V1 neurons to this region and suppresses responses to surrounding region.
Figure 5: Kindling of V1 activity by lateral pulvinar excitation after LGN lesion.

Similar content being viewed by others

References

  1. Kandel, E.R., Schwartz, J.H. & Jessell, T.M. Principles of Neural Science (New York, McGraw-Hill, 2000).

  2. Purves, D., Augustine, G.J. & Fitzpatrick, D. Neurosciencez (Sinauer Associates, 2004).

  3. Van Essen, D.C., Anderson, C.H. & Felleman, D.J. Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992).

    Article  CAS  Google Scholar 

  4. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  5. Kaas, J.H. & Lyon, D.C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res. Rev. 55, 285–296 (2007).

    Article  Google Scholar 

  6. Robinson, D.L. & Robinson, S.E. Pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    Article  CAS  Google Scholar 

  7. Casanova, C. The visual functions of the pulvinar. in The Visual Neurosciences (eds. Werner, J.S. & Chalupa, L.M.) 592–608 (Cambridge, Massachusetts, MIT Press, 2004).

  8. Benevento, L.A. & Rezak, M. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Res. 108, 1–24 (1976).

    Article  CAS  Google Scholar 

  9. Rezak, M. & Benevento, L.A. A comparison of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to striate cortex (area 17) in the macaque monkey. Brain Res. 167, 19–40 (1979).

    Article  CAS  Google Scholar 

  10. Ogren, M.P. & Hendrickson, A.E. The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res. 137, 343–350 (1977).

    Article  CAS  Google Scholar 

  11. Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998).

    Article  CAS  Google Scholar 

  12. Ward, R., Danziger, S., Owen, V. & Rafal, R. Deficits in spatial coding and feature binding following damage to the human pulvinar. Nat. Neurosci. 5, 99–100 (2002).

    Article  CAS  Google Scholar 

  13. Karnath, H.-O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus, and pulvinar. Brain 125, 350–360 (2002).

    Article  Google Scholar 

  14. Arend, I. et al. The role of the human pulvinar in visual attention and action: evidences from temporal order judgment, saccade decision and anti-saccade tasks. Prog. Brain Res. 171, 475–483 (2008).

    Article  Google Scholar 

  15. Snow, J.C., Allen, H.A., Rafal, R.D. & Humphreys, G.W. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proc. Natl. Acad. Sci. USA 106, 4054–4059 (2009).

    Article  CAS  Google Scholar 

  16. Chalupa, L.M. A review of cat and monkey studies implicating the pulvinar in visual function. Behav. Biol. 20, 149–167 (1977).

    Article  CAS  Google Scholar 

  17. Ungerleider, L.G. & Christensen, C.A. Pulvinar lesions in monkeys produce abnormal scanning of a complex visual array. Neuropsychologia 17, 493–501 (1979).

    Article  CAS  Google Scholar 

  18. Bender, D.B. & Butter, C.M. Comparison of the effects of superior colliculus and pulvinar lesions on visual search and tachistoscopic pattern discrimination in monkeys. Exp. Brain Res. 69, 140–154 (1987).

    Article  CAS  Google Scholar 

  19. Rafal, R.D. & Posner, M.I. Deficits in human visual spatial attention following thalamic lesions. Proc. Natl. Acad. Sci. USA 84, 7349–7353 (1987).

    Article  CAS  Google Scholar 

  20. Wilke, M., Turchi, J., Smith, K., Mishkin, M. & Leopold, D.A. Pulvinar inactivation disrupts selection of movement plans. J. Neurosci. 30, 8650–8659 (2010).

    Article  CAS  Google Scholar 

  21. Fischer, J. & Whitney, D. Precise discrimination of object position in the human pulvinar. Hum. Brain Mapp. 30, 101–111 (2009).

    Article  Google Scholar 

  22. Smith, A.T., Cotton, P.L., Bruno, A. & Moutsiana, C. Dissociating vision and visual attention in the human pulvinar. J. Neurophysiol. 101, 917–925 (2009).

    Article  CAS  Google Scholar 

  23. Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb. Symp. Quant. Biol. 55, 963–971 (1990).

    Article  CAS  Google Scholar 

  24. Petersen, S.E., Robinson, D.L. & Morris, J.D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97–105 (1987).

    Article  CAS  Google Scholar 

  25. Bender, D.B. & Youakim, M. The effect of attentive fixation in macaque thalamus and cortex. J. Neurophysiol. 85, 219–234 (2001).

    Article  CAS  Google Scholar 

  26. Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. J. Neurophysiol. 91, 438–448 (2004).

    Article  Google Scholar 

  27. Wilke, M., Mueller, K.M. & Leopold, D.A. Neural activity in the visual thalamus reflects perceptual suppression. Proc. Natl. Acad. Sci. USA 106, 9465–9470 (2009).

    Article  CAS  Google Scholar 

  28. Berman, R.A. & Wurtz, R.H. Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. J. Neurosci. 31, 373–384 (2011).

    Article  CAS  Google Scholar 

  29. Ivanov, I. et al. Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am. J. Psychiatry 167, 397–408 (2010).

    Article  Google Scholar 

  30. Mize, R.R. & White, D.A. [3H]Muscimol labels neurons in both the superficial and deep layers of cat superior colliculus. Neurosci. Lett. 104, 31–37 (1989).

    Article  CAS  Google Scholar 

  31. Martin, J.H. Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci. Lett. 127, 160–164 (1991).

    Article  CAS  Google Scholar 

  32. Hikosaka, O. & Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J. Neurophysiol. 53, 292–308 (1985).

    Article  CAS  Google Scholar 

  33. Reid, R.C. & Alonso, J.M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  Google Scholar 

  34. Molotchnikoff, S. & Shumikhina, S. The lateral posterior-pulvinar complex modulation of stimulus-dependent oscillations in the cat visual cortex. Vision Res. 36, 2037–2046 (1996).

    Article  CAS  Google Scholar 

  35. Logothetis, N.K. et al. The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci. 13, 1283–1291 (2010).

    Article  CAS  Google Scholar 

  36. Sherman, S.M. & Guillery, R.W. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).

    Article  Google Scholar 

  37. De Pasquale, R. & Sherman, S.M. Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. J. Neurosci. 31, 16494–16506 (2011).

    Article  CAS  Google Scholar 

  38. McCormick, D.A., Shu, Y.S. & Hasenstaub, A. Balanced recurrent excitation and inhibition in local cortical networks. in Excitatory-Inhibitory Balance: Synapses, Circuits, Systems (ed. Hensch, T.) 113–124 (Kluver Academic Press, New York, 2003).

  39. Ferster, D. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J. Neurosci. 6, 1284–1301 (1986).

    Article  CAS  Google Scholar 

  40. Softky, W.R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  Google Scholar 

  41. Borg-Graham, L.J., Monier, C. & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  Google Scholar 

  42. Somers, D.C., Nelson, S.B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  43. Mariño, J. et al. Invariant computations in local cortical networks with balanced excitation and inhibition. Nat. Neurosci. 8, 194–201 (2005).

    Article  Google Scholar 

  44. Callaway, E.M. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21, 47–74 (1998).

    Article  CAS  Google Scholar 

  45. Rockland, K.S. Convergence and branching patterns of round, type 2 corticopulvinar axons. J. Comp. Neurol. 390, 515–536 (1998).

    Article  CAS  Google Scholar 

  46. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  47. Van Essen, D.C. Cortico-cortical and thalamo-cortical information flow in the primate visual system. in Cortical Function: A View from the Thalamus (eds. Casagrande, V.A., Guillery, R. & Sherman, M.) 173–185 (Elsevier, 2005).

  48. Olshausen, B.A., Anderson, C.H. & Van Essen, D.C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13, 4700–4719 (1993).

    Article  CAS  Google Scholar 

  49. Ramachandran, V.S. & Gregory, R. Perceptual filling in of artificially induced scotomas in human vision. Nature 350, 699–702 (1991).

    Article  CAS  Google Scholar 

  50. Bishop, P.O., Henry, G.H. & Smith, C.J. Binocular interaction fields of single units in the cat striate cortex. J. Physiol. 216, 39–68 (1971).

    Article  CAS  Google Scholar 

  51. Karnovsky, M.J. & Roots, L.A. 'direct coloring' thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221 (1964).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Mavity-Hudson for histology, S. Walston, Y. Jiang, D. Yampolsky, J. Mavity-Hudson, J. Patel and D. Rinker for help with experiments, D. Yampolsky for technical and computational assistance, and M. Feurtado for veterinary assistance. We thank F. Ebner, J. Kaas, R. Khumbani, J. Schall, P. Wallisch and K.-W. Yao for their suggestions and comments on the work. This work was supported by US National Institutes of Health grants R01-EY01778, P30-EY008126, T32-EY07135 and P30-HD15052.

Author information

Authors and Affiliations

Authors

Contributions

G.P. and V.A.C. designed the experiments. G.P., R.M., K.L. and V.A.C. performed the experiments. G.P. analyzed the data and wrote the paper. G.P., R.M., K.L. and V.A.C. edited the manuscript. V.A.C. supervised the work.

Corresponding authors

Correspondence to Gopathy Purushothaman or Vivien A Casagrande.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 4368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purushothaman, G., Marion, R., Li, K. et al. Gating and control of primary visual cortex by pulvinar. Nat Neurosci 15, 905–912 (2012). https://doi.org/10.1038/nn.3106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing