Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural activity at the human olfactory epithelium reflects olfactory perception

Abstract

Organization of receptive surfaces reflects primary axes of perception. In vision, retinal coordinates reflect spatial coordinates. In audition, cochlear coordinates reflect tonal coordinates. However, the rules underlying the organization of the olfactory receptive surface are unknown. To test the hypothesis that organization of the olfactory epithelium reflects olfactory perception, we inserted an electrode into the human olfactory epithelium to directly measure odorant-induced evoked responses. We found that pairwise differences in odorant pleasantness predicted pairwise differences in response magnitude; that is, a location that responded maximally to a pleasant odorant was likely to respond strongly to other pleasant odorants, and a location that responded maximally to an unpleasant odorant was likely to respond strongly to other unpleasant odorants. Moreover, the extent of an individual's perceptual span predicted their span in evoked response. This suggests that, similarly to receptor surfaces for vision and audition, organization of the olfactory receptor surface reflects key axes of perception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Different localizer odorants revealed different epithelial response profiles.
Figure 3: A common localizer odorant revealed common epithelial response profiles.
Figure 4: An external common localizer odorant revealed a bimodal epithelial response profile.
Figure 5: EOGs were unrelated to odorant sorption.
Figure 6: EOGs were tuned to olfactory perception.

Similar content being viewed by others

References

  1. DeValois, R.L. & DeValois, K.K. Spatial vision. in Encyclopedia of the Human Brain (ed. Ramachandran, V.S.) 419–431 (Academic Press, New York, 2002).

  2. Vater, M. & Kossl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2010).

    Article  Google Scholar 

  3. Fleischer, J., Breer, H. & Strotmann, J. Mammalian olfactory receptors. Front. Cell. Neurosci. 3, 9 (2009).

    Article  Google Scholar 

  4. Iwema, C.L., Fang, H., Kurtz, D.B., Youngentob, S.L. & Schwob, J.E. Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. J. Neurosci. 24, 356–369 (2004).

    Article  CAS  Google Scholar 

  5. Miyamichi, K., Serizawa, S., Kimura, H.M. & Sakano, H. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J. Neurosci. 25, 3586–3592 (2005).

    Article  CAS  Google Scholar 

  6. Moran, D.T., Rowley, J.C. III, Jafek, B.W. & Lovell, M.A. The fine structure of the olfactory mucosa in man. J. Neurocytol. 11, 721–746 (1982).

    Article  CAS  Google Scholar 

  7. Gilad, Y., Bustamante, C.D., Lancet, D. & Paabo, S. Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am. J. Hum. Genet. 73, 489–501 (2003).

    Article  CAS  Google Scholar 

  8. Kauer, J.S. & Moulton, D.G. Responses of olfactory bulb neurones to odor stimulation of small nasal areas in the salamander. J. Physiol. (Lond.) 243, 717–737 (1974).

    Article  CAS  Google Scholar 

  9. Edwards, D.A., Mather, R.A. & Dodd, G.H. Spatial variation in response to odorants on the rat olfactory epithelium. Experientia 44, 208–211 (1988).

    Article  CAS  Google Scholar 

  10. Ezeh, P.I., Davis, L.M. & Scott, J.W. Regional distribution of rat electroolfactogram. J. Neurophysiol. 73, 2207–2220 (1995).

    Article  CAS  Google Scholar 

  11. Mackay-Sim, A. & Kesteven, S. Topographic patterns of responsiveness to odorants in the rat olfactory epithelium. J. Neurophysiol. 71, 150–160 (1994).

    Article  CAS  Google Scholar 

  12. Scott, J.W., Shannon, D.E., Charpentier, J., Davis, L.M. & Kaplan, C. Spatially organized response zones in rat olfactory epithelium. J. Neurophysiol. 77, 1950–1962 (1997).

    Article  CAS  Google Scholar 

  13. Leopold, D.A. et al. Anterior distribution of human olfactory epithelium. Laryngoscope 110, 417–421 (2000).

    Article  CAS  Google Scholar 

  14. Kent, P.F., Mozell, M.M., Youngentob, S.L. & Yurco, P. Mucosal activity patterns as a basis for olfactory discrimination: comparing behavior and optical recordings. Brain Res. 981, 1–11 (2003).

    Article  CAS  Google Scholar 

  15. Mozell, M.M. & Jagodowicz, M. Chromatographic separation of odorants by the nose: retention times measured across in vivo olfactory mucosa. Science 181, 1247–1249 (1973).

    Article  CAS  Google Scholar 

  16. Hornung, D.E. & Mozell, M.M. Odorant removal from the frog olfactory mucosa. Brain Res. 128, 158–163 (1977).

    Article  CAS  Google Scholar 

  17. Schiffman, S.S. Physicochemical correlates of olfactory quality. Science 185, 112–117 (1974).

    Article  CAS  Google Scholar 

  18. Richardson, J.T. & Zucco, G.M. Cognition and olfaction: a review. Psychol. Bull. 105, 352–360 (1989).

    Article  CAS  Google Scholar 

  19. Khan, R.M. et al. Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J. Neurosci. 27, 10015–10023 (2007).

    Article  CAS  Google Scholar 

  20. Zarzo, M. Psychologic dimensions in the perception of everyday odors: pleasantness and edibility. J. Sens. Stud. 23, 354–376 (2008).

    Article  Google Scholar 

  21. Yeshurun, Y. & Sobel, N. An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Annu. Rev. Psychol. 61, 219–241 (2010).

    Article  Google Scholar 

  22. Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J.D. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2, 9 (2009).

    Article  Google Scholar 

  23. Haddad, R. et al. Global features of neural activity in the olfactory system form a parallel code that predicts olfactory behavior and perception. J. Neurosci. 30, 9017–9026 (2010).

    Article  CAS  Google Scholar 

  24. Keller, A., Zhuang, H., Chi, Q., Vosshall, L.B. & Matsunami, H. Genetic variation in a human odorant receptor alters odor perception. Nature 449, 468–472 (2007).

    Article  CAS  Google Scholar 

  25. Garcia, G.J., Tewksbury, E.W., Wong, B.A. & Kimbell, J.S. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J. Aerosol Med. Pulm. Drug Deliv. 22, 139–155 (2009).

    Article  Google Scholar 

  26. Kobal, G. Elektrophysiologische Untersuchungen des menschlichen Geruchssinns. (Thieme Verlag, Stuttgart, 1981).

  27. Lapid, H. et al. Odorant concentration dependence in electroolfactograms recorded from the human olfactory epithelium. J. Neurophysiol. 102, 2121–2130 (2009).

    Article  Google Scholar 

  28. Mackay-Sim, A. & Kittel, P. Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J. Neurosci. 11, 979–984 (1991).

    Article  CAS  Google Scholar 

  29. Menco, B.P. Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory structures of frog, ox, rat and dog. I. A general survey. Cell Tissue Res. 207, 183–209 (1980).

    Article  CAS  Google Scholar 

  30. Knecht, M. & Hummel, T. Recording of the human electro-olfactogram. Physiol. Behav. 83, 13–19 (2004).

    Article  CAS  Google Scholar 

  31. Hasin-Brumshtein, Y., Lancet, D. & Olender, T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet. 25, 178–184 (2009).

    Article  CAS  Google Scholar 

  32. Keller, A. & Vosshall, L.B. Influence of odorant receptor repertoire on odor perception in humans and fruit flies. Proc. Natl. Acad. Sci. USA 104, 5614 (2007).

    Article  CAS  Google Scholar 

  33. Doty, R.L. et al. Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol. Behav. 20, 175–185 (1978).

    Article  CAS  Google Scholar 

  34. Sakano, H. Neural map formation in the mouse olfactory system. Neuron 67, 530–542 (2010).

    Article  CAS  Google Scholar 

  35. Wise, P.M., Zhao, K. & Wysocki, C.J. Dynamics of nasal chemesthesis. Ann. NY Acad. Sci. 1170, 206–214 (2009).

    Article  CAS  Google Scholar 

  36. Yang, G.C., Scherer, P.W. & Mozell, M.M. Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity. Chem. Senses 32, 215–223 (2007).

    Article  CAS  Google Scholar 

  37. Scott, J.W., Acevedo, H.P., Sherrill, L. & Phan, M. Responses of the rat olfactory epithelium to retronasal air flow. J. Neurophysiol. 97, 1941–1950 (2007).

    Article  Google Scholar 

  38. Haddad, R. et al. A metric for odorant comparison. Nat. Methods 5, 425–429 (2008).

    Article  CAS  Google Scholar 

  39. Ayci, F., Aydinli, M., Bozdemir, Ö.A. & Tutaş, M. Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Fragrance J. 20, 481–486 (2005).

    Article  CAS  Google Scholar 

  40. Purves, D., Beau Lotto, R., Mark Williams, S., Nundy, S. & Yang, Z. Why we see things the way we do: evidence for a wholly empirical strategy of vision. Phil. Trans. R. Soc. Lond. B 356, 285 (2001).

    Article  CAS  Google Scholar 

  41. Howe, C.Q. & Purves, D. The Müller-Lyer illusion explained by the statistics of image-source relationships. Proc. Natl. Acad. Sci. USA 102, 1234 (2005).

    Article  CAS  Google Scholar 

  42. Wesson, D.W. & Wilson, D.A. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci. Biobehav. Rev. 35, 655–668 (2011).

    Article  Google Scholar 

  43. Li, W. et al. Right orbitofrontal cortex mediates conscious olfactory perception. Psychol. Sci. 21, 1454–1463 (2010).

    Article  Google Scholar 

  44. Gottfried, J.A. & Dolan, R.J. The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39, 375–386 (2003).

    Article  CAS  Google Scholar 

  45. Gottfried, J.A., Winston, J.S. & Dolan, R.J. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49, 467–479 (2006).

    Article  CAS  Google Scholar 

  46. Moran, D.T. Anatomy and ultrastructure of the human olfactory neuroepithelium. in Handbook of Olfaction and Gustation (ed. Doty, R.L.) 75–102 (Marcel-Dekker, New York, 1995).

  47. Maresh, A., Rodriguez Gil, D., Whitman, M.C. & Greer, C.A. Principles of glomerular organization in the human olfactory bulb—implications for odor processing. PLoS ONE 3, e2640 (2008).

    Article  Google Scholar 

  48. Kepecs, A., Uchida, N. & Mainen, Z.F. The sniff as a unit of olfactory processing. Chem. Senses 31, 167–179 (2006).

    Article  Google Scholar 

  49. Mainland, J. & Sobel, N. The sniff is part of the olfactory percept. Chem. Senses 31, 181–196 (2006).

    Article  Google Scholar 

  50. Hummel, T., Futschik, T., Frasnelli, J. & Huttenbrink, K.B. Effects of olfactory function, age, and gender on trigeminally mediated sensations: a study based on the lateralization of chemosensory stimuli. Toxicol. Lett. 140–141, 273–280 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ERC-FP7 Ideas grant #200850 and by the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and N.S. conceived the study. H.L., S.S., A.P., T.H., Y.R. and N.S. designed the experiments. H.L., S.S. and A.P. performed the experiments. H.L., E.S., H.V. and N.S. analyzed the data. H.L., T.H., E.S. and N.S. wrote the manuscript.

Corresponding authors

Correspondence to Hadas Lapid or Noam Sobel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Tables 1–3 (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapid, H., Shushan, S., Plotkin, A. et al. Neural activity at the human olfactory epithelium reflects olfactory perception. Nat Neurosci 14, 1455–1461 (2011). https://doi.org/10.1038/nn.2926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing