Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses

Abstract

The regulation of glycine receptor (GlyR) number at synapses is necessary for the efficacy of inhibition and the control of neuronal excitability in the spinal cord. GlyR accumulation at synapses depends on the scaffolding molecule gephyrin and is linked to GlyR synaptic dwell time. However, the mechanisms that tune GlyR synaptic exchanges in response to different neuronal environments are unknown. Integrins are cell adhesion molecules and signaling receptors. Using single quantum dot imaging and fluorescence recovery after photobleaching, we found in rats that β1 and β3 integrins adjust synaptic strength by regulating the synaptic dwell time of both GlyRs and gephyrin. β1 and β3 integrins crosstalked via calcium/calmodulin-dependent protein kinase II and adapted GlyR lateral diffusion and gephyrin-dependent trapping at synapses. This provides a mechanism for maintaining or adjusting the steady state of postsynaptic molecule exchanges and the level of glycinergic inhibition in response to neuron- and glia-derived signals or extracellular matrix remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RGD peptides increase GlyR numbers at synapses.
Figure 2: β1 and β3 integrin blocking antibodies have opposite effects on GlyR numbers at synapses.
Figure 3: β1 and β3 integrins control GlyR lateral diffusion.
Figure 4: β1 and β3 integrins modulate GlyR confinement and dwell time at synapses.
Figure 5: β1 and β3 integrins control gephyrin amount and exchanges at synapses.
Figure 6: Actin, PKC and CaMKII mediate integrin-dependent regulation of GlyR lateral dynamics.
Figure 7: TSP1 and fibrinogen have opposite effects at inhibitory synapses.

Similar content being viewed by others

References

  1. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Calamai, M. et al. Gephyrin oligomerization controls GlyR mobility and synaptic clustering. J. Neurosci. 29, 7639–7648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gray, N.W., Weimer, R.M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Specht, C.G. & Triller, A. The dynamics of synaptic scaffolds. Bioessays 30, 1062–1074 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Miranti, C.K. & Brugge, J.S. Sensing the environment: a historical perspective on integrin signal transduction. Nat. Cell Biol. 4, E83–E90 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Pinkstaff, J.K., Detterich, J., Lynch, G. & Gall, C. Integrin subunit gene expression is regionally differentiated in adult brain. J. Neurosci. 19, 1541–1556 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, C.S., Weeber, E.J., Kurup, S., Sweatt, J.D. & Davis, R.L. Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci. 23, 7107–7116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Cingolani, L.A. et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron 58, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kloss, C.U. et al. Integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial motor nucleus. J. Comp. Neurol. 411, 162–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Staubli, U., Vanderklish, P. & Lynch, G. An inhibitor of integrin receptors blocks long-term potentiation. Behav. Neural Biol. 53, 1–5 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Chan, C.S. et al. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity and working memory. J. Neurosci. 26, 223–232 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, Z. et al. Distinct roles of the beta 1-class integrins at the developing and the mature hippocampal excitatory synapse. J. Neurosci. 26, 11208–11219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kramár, E.A., Lin, B., Rex, C.S., Gall, C.M. & Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA 103, 5579–5584 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Betz, H. & Laube, B. Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97, 1600–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pfaff, M., McLane, M.A., Beviglia, L., Niewiarowski, S. & Timpl, R. Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhes. Commun. 2, 491–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X.B. et al. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Natl. Acad. Sci. USA 105, 19520–19525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charrier, C., Ehrensperger, M.V., Dahan, M., Levi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26, 8502–8511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lévi, S. et al. Homeostatic regulation of synaptic GlyR numbers driven by lateral diffusion. Neuron 59, 261–273 (2008).

    Article  PubMed  Google Scholar 

  22. Hanus, C., Ehrensperger, M.V. & Triller, A. Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J. Neurosci. 26, 4586–4595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeFreitas, M.F. et al. Identification of integrin alpha 3 beta 1 as a neuronal thrombospondin receptor mediating neurite outgrowth. Neuron 15, 333–343 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Möller, J.C. et al. Regulation of thrombospondin in the regenerating mouse facial motor nucleus. Glia 17, 121–132 (1996).

    Article  PubMed  Google Scholar 

  25. Lin, T.N. et al. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke 34, 177–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Schachtrup, C. et al. Fibrinogen inhibits neurite outgrowth via beta 3 integrin-mediated phosphorylation of the EGF receptor. Proc. Natl. Acad. Sci. USA 104, 11814–11819 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanus, C., Vannier, C. & Triller, A. Intracellular association of glycine receptor with gephyrin increases its plasma membrane accumulation rate. J. Neurosci. 24, 1119–1128 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehrensperger, M.V., Hanus, C., Vannier, C., Triller, A. & Dahan, M. Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys. J. 92, 3706–3718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bedet, C. et al. Regulation of gephyrin assembly and glycine receptor synaptic stability. J. Biol. Chem. 281, 30046–30056 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zita, M.M. et al. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J. 26, 1761–1771 (2007).

    Article  PubMed  Google Scholar 

  31. Wu, X. et al. Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J. Cell Biol. 143, 241–252 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blystone, S.D., Slater, S.E., Williams, M.P., Crow, M.T. & Brown, E.J. A molecular mechanism of integrin crosstalk: alphavbeta3 suppression of calcium/calmodulin-dependent protein kinase II regulates alpha5beta1 function. J. Cell Biol. 145, 889–897 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steiner, P. et al. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60, 788–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayashi, M.K. et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137, 159–171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trinidad, J.C., Specht, C.G., Thalhammer, A., Schoepfer, R. & Burlingame, A.L. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics 5, 914–922 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Tweedie-Cullen, R.Y., Reck, J.M. & Mansuy, I.M. Comprehensive mapping of post-translational modifications on synaptic, nuclear and histone proteins in the adult mouse brain. J. Proteome Res. 8, 4966–4982 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Saiyed, T. et al. Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J. Biol. Chem. 282, 5625–5632 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Liauw, J. et al. Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J. Cereb. Blood Flow Metab. 28, 1722–1732 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Harvey, R.J. et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Kaneko, M., Stellwagen, D., Malenka, R.C. & Stryker, M.P. Tumor necrosis factor–alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58, 673–680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stellwagen, D. & Malenka, R.C. Synaptic scaling mediated by glial TNF-alpha. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Lévi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci. 111, 335–345 (1998).

    PubMed  Google Scholar 

  45. Meier, J., Meunier-Durmort, C., Forest, C., Triller, A. & Vannier, C. Formation of glycine receptor clusters and their accumulation at synapses. J. Cell Sci. 113, 2783–2795 (2000).

    CAS  PubMed  Google Scholar 

  46. Dumoulin, A., Levi, S., Riveau, B., Gasnier, B. & Triller, A. Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons. Eur. J. Neurosci. 12, 3883–3892 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Saxton, M.J. Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72, 1744–1753 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meier, J., De Chaldee, M., Triller, A. & Vannier, C. Functional heterogeneity of gephyrins. Mol. Cell. Neurosci. 16, 566–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Paarmann, I., Schmitt, B., Meyer, B., Karas, M. & Betz, H. Mass spectrometric analysis of glycine receptor-associated gephyrin splice variants. J. Biol. Chem. 281, 34918–34925 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Triller laboratory, S. Supplisson, K. Aubrey, L. Wang and O. Pascual for kindly providing access to their patch-clamp rig and for helpful discussions, Y. Goda and L. Cingolani for integrin constructs and C. Specht, B. Barbour and R. Miles for critical reading of the manuscript. This work was supported by INSERM (A.T.), Agence Nationale de la Recherche (ANR08BLAN0282; A.T.), Fondation Pierre-Gilles de Gennes (A.T.), Institut pour la Recherche sur la Moelle épinière et l'Encéphale (A.T.), Ministère de la Recherche et de la Technologie (C.C. and P.M.) and Association Française contre les Myopathies (C.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.C. designed, performed and analyzed the experiments except for the in vitro phosphorylation assays and mass spectrometry and wrote the manuscript with help from the other authors. P.M. performed the in vitro phosphorylation assays. R.Y.T.-C. and D.R. performed mass spectrometry and analyzed data. I.M.M. supervised mass spectrometry and phosphorylation analyses. A.T. supervised the project.

Corresponding author

Correspondence to Antoine Triller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 3339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charrier, C., Machado, P., Tweedie-Cullen, R. et al. A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nat Neurosci 13, 1388–1395 (2010). https://doi.org/10.1038/nn.2645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing