Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PTEN deletion enhances the regenerative ability of adult corticospinal neurons

Abstract

Despite the essential role of the corticospinal tract (CST) in controlling voluntary movements, successful regeneration of large numbers of injured CST axons beyond a spinal cord lesion has never been achieved. We found that PTEN/mTOR are critical for controlling the regenerative capacity of mouse corticospinal neurons. After development, the regrowth potential of CST axons was lost and this was accompanied by a downregulation of mTOR activity in corticospinal neurons. Axonal injury further diminished neuronal mTOR activity in these neurons. Forced upregulation of mTOR activity in corticospinal neurons by conditional deletion of Pten, a negative regulator of mTOR, enhanced compensatory sprouting of uninjured CST axons and enabled successful regeneration of a cohort of injured CST axons past a spinal cord lesion. Furthermore, these regenerating CST axons possessed the ability to reform synapses in spinal segments distal to the injury. Thus, modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between age-dependent decrease of CST sprouting and phospho-S6 levels in corticospinal neurons.
Figure 2: Pten deletion prevents p-S6 downregulation in corticospinal neurons after pyramidotomy.
Figure 3: Pten deletion promotes CST sprouting in adult mice with unilateral pyramidotomy.
Figure 4: Increased CST regrowth in Pten-deleted mice after T8 dorsal hemisection.
Figure 5: CST regeneration in PTEN deleted mice after a T8 spinal cord crush injury.
Figure 6: CST regeneration in PtenloxP/loxP mice with AAV injection at 4 weeks and T8 spinal cord crush injury at 8 weeks.
Figure 7: Regenerating CST axons after Pten deletion form synapse-structures in spinal segments caudal to a crush injury.

Similar content being viewed by others

References

  1. Raineteau, O. & Schwab, M.E. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 (2001).

    Article  CAS  Google Scholar 

  2. Blesch, A. & Tuszynski, M.H. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 32, 41–47 (2009).

    Article  CAS  Google Scholar 

  3. Zheng, B., Lee, J.K. & Xie, F. Genetic mouse models for studying inhibitors of spinal axon regeneration. Trends Neurosci. 29, 640–646 (2006).

    Article  CAS  Google Scholar 

  4. Deumens, R., Koopmans, G.C. & Joosten, E.A. Regeneration of descending axon tracts after spinal cord injury. Prog. Neurobiol. 77, 57–89 (2005).

    Article  CAS  Google Scholar 

  5. Thallmair, M., Metz, G.A., Z'Graggen, W.J., Raineteau, O., Kartje, G.L. & Schwab, M.E. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat. Neurosci. 1, 124–131 (1998).

    Article  CAS  Google Scholar 

  6. Cafferty, W.B. & Strittmatter, S.M. The Nogo-Nogo receptor pathway limits a spectrum of adult CNS axonal growth. J. Neurosci. 26, 12242–12250 (2006).

    Article  CAS  Google Scholar 

  7. Case, L.C. & Tessier-Lavigne, M. Regeneration of the adult central nervous system. Curr. Biol. 15, R749–R753 (2005).

    Article  CAS  Google Scholar 

  8. Schnell, L. & Schwab, M.E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990).

    Article  CAS  Google Scholar 

  9. Savio, T. & Schwab, M.E. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord. Proc. Natl. Acad. Sci. USA 87, 4130–4133 (1990).

    Article  CAS  Google Scholar 

  10. García-Alías, G., Barkhuysen, S., Buckle, M. & Fawcett, J.W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    Article  Google Scholar 

  11. Leaver, S.G. et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 13, 1328–1341 (2006).

    Article  CAS  Google Scholar 

  12. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y.A. & Schwab, M.E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170–173 (1994).

    Article  CAS  Google Scholar 

  13. Hiebert, G.W., Khodarahmi, K., McGraw, J., Steeves, J.D. & Tetzlaff, W. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers, but not regeneration into a peripheral nerve transplant. J. Neurosci. Res. 69, 160–168 (2002).

    Article  CAS  Google Scholar 

  14. Hollis, E.R. II, Lu, P., Blesch, A. & Tuszynski, M.H. IGF-I gene delivery promotes corticospinal neuronal survival, but not regeneration, after adult CNS injury. Exp. Neurol. 215, 53–59 (2009).

    Article  CAS  Google Scholar 

  15. David, S. & Aguayo, A.J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    Article  CAS  Google Scholar 

  16. Richardson, P.M., Issa, V.M. & Aguayo, A.J. Regeneration of long spinal axons in the rat. J. Neurocytol. 13, 165–182 (1984).

    Article  CAS  Google Scholar 

  17. Bregman, B.S., Kunkel-Bagden, E., McAtee, M. & O'Neill, A. Extension of the critical period for developmental plasticity of the corticospinal pathway. J. Comp. Neurol. 282, 355–370 (1989).

    Article  CAS  Google Scholar 

  18. Park, K.K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008).

    Article  CAS  Google Scholar 

  19. Bareyre, F.M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277 (2004).

    Article  CAS  Google Scholar 

  20. Weidner, N., Ner, A., Salimi, N. & Tuszynski, M.H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 98, 3513–3518 (2001).

    Article  CAS  Google Scholar 

  21. Ma, X.M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  Google Scholar 

  22. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  Google Scholar 

  23. Hasegawa, H. & Wang, F. Visualizing mechanosensory endings of TrkC-expressing neurons in HS3ST-2-hPLAP mice. J. Comp. Neurol. 511, 543–556 (2008).

    Article  CAS  Google Scholar 

  24. Bareyre, F.M., Kerschensteiner, M., Misgeld, T. & Sanes, J.R. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat. Med. 11, 1355–1360 (2005).

    Article  CAS  Google Scholar 

  25. Simonen, M. et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38, 201–211 (2003).

    Article  CAS  Google Scholar 

  26. Kim, J.E., Li, S., GrandPre, T., Qiu, D. & Strittmatter, S.M. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38, 187–199 (2003).

    Article  CAS  Google Scholar 

  27. Zheng, B. et al. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38, 213–224 (2003).

    Article  CAS  Google Scholar 

  28. Steward, O. et al. Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice. J. Neurosci. 28, 6836–6847 (2008).

    Article  CAS  Google Scholar 

  29. Fujiki, M., Zhang, Z., Guth, L. & Steward, O. Genetic influences on cellular reactions to spinal cord injury: activation of macrophages/microglia and astrocytes is delayed in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration. J. Comp. Neurol. 371, 469–484 (1996).

    Article  CAS  Google Scholar 

  30. Inman, D.M. & Steward, O. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. J. Comp. Neurol. 462, 431–449 (2003).

    Article  Google Scholar 

  31. Tom, V.J., Steinmetz, M.P., Miller, J.H., Doller, C.M. & Silver, J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci. 24, 6531–6539 (2004).

    Article  CAS  Google Scholar 

  32. Lee, J.K. et al. Reassessment of corticospinal tract regeneration in Nogo-deficient mice. J. Neurosci. 29, 8649–8654 (2009).

    Article  CAS  Google Scholar 

  33. Bundesen, L.Q., Scheel, T.A., Bregman, B.S. & Kromer, L.F. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J. Neurosci. 23, 7789–7800 (2003).

    Article  CAS  Google Scholar 

  34. Maier, I.C. et al. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J. Neurosci. 28, 9386–9403 (2008).

    Article  CAS  Google Scholar 

  35. Varoqui, H., Schäfer, M.K., Zhu, H., Weihe, E. & Erickson, J.D. Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J. Neurosci. 22, 142–155 (2002).

    Article  CAS  Google Scholar 

  36. Persson, S. et al. Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. J. Comp. Neurol. 497, 683–701 (2006).

    Article  CAS  Google Scholar 

  37. Zhou, F.Q., Zhou, J., Dedhar, S., Wu, Y.H. & Snider, W.D. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004).

    Article  CAS  Google Scholar 

  38. Park, K.K., Liu, K., Hu, Y., Kanter, J.L. & He, Z. PTEN/mTOR and axon regeneration. Exp. Neurol. 223, 45–50 (2010).

    Article  CAS  Google Scholar 

  39. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  Google Scholar 

  40. Yin, H.S. & Selzer, M.E. Axonal regeneration in lamprey spinal cord. J. Neurosci. 3, 1135–1144 (1983).

    Article  CAS  Google Scholar 

  41. Bernstein, J.J. & Gelderd, J.B. Synaptic reorganization following regeneration of goldfish spinal cord. Exp. Neurol. 41, 402–410 (1973).

    Article  CAS  Google Scholar 

  42. García-Alías, G., Barkhuysen, S., Buckle, M. & Fawcett, J.W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    Article  Google Scholar 

  43. Houle, J.D. et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci. 26, 7405–7415 (2006).

    Article  CAS  Google Scholar 

  44. Alto, L.T. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat. Neurosci. 12, 1106–1113 (2009).

    Article  CAS  Google Scholar 

  45. Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    Article  CAS  Google Scholar 

  46. Kennard, M.A. age and other factors in motor recovery from precentral lesions in monkeys. Am. J. Physiol. 115, 138–146 (1936).

    Article  Google Scholar 

  47. Berger, W. Characteristics of locomotor control in children with cerebral palsy. Neurosci. Biobehav. Rev. 22, 579–582 (1998).

    Article  CAS  Google Scholar 

  48. Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    Article  CAS  Google Scholar 

  49. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Wang for providing Rosa-stop-PLAP mice and M. Greenberg, M. Tessier-Lavigne and C. Woolf for reading the manuscript. This work was supported by grants from Wings for Life (K.L. and Z.H.), the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (Z.H.), the Craig H. Neilson Foundation (Y.L. and K.K.P.), the National Institute of Neurological Disorders and Stroke (Z.H., B.Z. and O.S.), the International Spinal Research Trust (Z.H.) and a private contribution to the Reeve-Irvine Research Center (O.S.). R.W. is the recipient of a predoctoral fellowship from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Contributions

K.L., Y.L., J.K.L., R.S., R.W., I.S.-K., A.T., K.K.P., D.J., B.C., B.X., L.C. and O.S. performed the experiments and analyzed the data. K.L., J.K.L., O.S., B.Z. and Z.H. drafted and edited the manuscript.

Corresponding author

Correspondence to Zhigang He.

Ethics declarations

Competing interests

O.S. and Z.H. are co-founders of Axonis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 7816 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Lu, Y., Lee, J. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13, 1075–1081 (2010). https://doi.org/10.1038/nn.2603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing