Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways

Abstract

Mammalian sterile 20-like kinase-3b (Mst3b, encoded by Stk24), regulates axon outgrowth in embryonic cortical neurons in culture, but its role in vivo and in neural repair is unknown. Here we show that Mst3b mediates the axon-promoting effects of trophic factors in mature rat retinal ganglion cells (RGCs) and dorsal root ganglion (DRG) neurons, and is essential for axon regeneration in vivo. Reducing Mst3b levels using short hairpin RNA prevented RGCs and DRG neurons from regenerating axons in response to growth factors in culture, as did expression of a kinase-dead Mst3b mutant. Conversely, expression of constitutively active Mst3b enabled both types of neurons to extend axons without growth factors. In vivo, RGCs lacking Mst3b failed to regenerate injured axons when stimulated by intraocular inflammation. DRG neurons regenerating axons in vivo showed elevated Mst3b activity, and reducing Mst3b expression attenuated regeneration and p42/44 MAPK activation. Thus, Mst3b regulates axon regeneration in both CNS and PNS neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mst3b mediates the response of retinal ganglion cells (RGCs) to growth factors.
Figure 2: Infection of RGCs with AAV2 expressing shRNAs in vivo.
Figure 3: Mst3b is essential for optic nerve regeneration.
Figure 4: Mst3b mediates the response of DRG neurons to NGF.
Figure 5: Mst3b knockdown in DRG neurons.
Figure 6: Mst3b knockdown attenuates peripheral nerve regeneration.
Figure 7: Mst3b activation and regulation of p42/44 MAPK phosphorylation in vivo.

Similar content being viewed by others

References

  1. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Oxford University Press, New York, 1991).

  2. Berry, M., Carlile, J. & Hunter, A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J. Neurocytol. 25, 147–170 (1996).

    Article  CAS  Google Scholar 

  3. Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L.I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615–4626 (2000).

    Article  CAS  Google Scholar 

  4. Fischer, D., Heiduschka, P. & Thanos, S. Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol. 172, 257–272 (2001).

    Article  CAS  Google Scholar 

  5. Pernet, V. & Di Polo, A. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain 129, 1014–1026 (2006).

    Article  Google Scholar 

  6. Yin, Y. et al. Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293 (2003).

    Article  CAS  Google Scholar 

  7. Lorber, B., Berry, M. & Logan, A. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur. J. Neurosci. 21, 2029–2034 (2005).

    Article  Google Scholar 

  8. Cen, L.P. et al. Chemotactic effect of ciliary neurotrophic factor on macrophages in retinal ganglion cell survival and axonal regeneration. Invest. Ophthalmol. Vis. Sci. 48, 4257–4266 (2007).

    Article  Google Scholar 

  9. Yin, Y. et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9, 843–852 (2006).

    Article  CAS  Google Scholar 

  10. Yin, Y. et al. Oncomodulin links inflammation to optic nerve regeneration. Proc. Natl. Acad. Sci. USA (in the press).

  11. Makwana, M. & Raivich, G. Molecular mechanisms in successful peripheral regeneration. FEBS J. 272, 2628–2638 (2005).

    Article  CAS  Google Scholar 

  12. Barrette, B. et al. Requirement of myeloid cells for axon regeneration. J. Neurosci. 28, 9363–9376 (2008).

    Article  CAS  Google Scholar 

  13. Yudin, D. et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59, 241–252 (2008).

    Article  CAS  Google Scholar 

  14. Greene, L.A., Volonte, C. & Chalazonitis, A. Purine analogs inhibit nerve growth factor-promoted neurite outgrowth by sympathetic and sensory neurons. J. Neurosci. 10, 1479–1485 (1990).

    Article  CAS  Google Scholar 

  15. Benowitz, L.I. et al. Axon outgrowth is regulated by an intracellular purine-sensitive mechanism in retinal ganglion cells. J. Biol. Chem. 273, 29626–29634 (1998).

    Article  CAS  Google Scholar 

  16. Irwin, N., Li, Y.M., O'Toole, J.E. & Benowitz, L.I. Mst3b, a purine-sensitive Ste20-like protein kinase, regulates axon outgrowth. Proc. Natl. Acad. Sci. USA 103, 18320–18325 (2006).

    Article  CAS  Google Scholar 

  17. Volonte, C. & Greene, L.A. Nerve growth factor-activated protein kinase N. Characterization and rapid near homogeneity purification by nucleotide affinity-exchange chromatography. J. Biol. Chem. 267, 21663–21670 (1992).

    CAS  PubMed  Google Scholar 

  18. Zurn, A.D. & Do, K.Q. Purine metabolite inosine is an adrenergic neurotrophic substance for cultured chicken sympathetic neurons. Proc. Natl. Acad. Sci. USA 85, 8301–8305 (1988).

    Article  CAS  Google Scholar 

  19. Chen, P., Goldberg, D.E., Kolb, B., Lanser, M. & Benowitz, L.I. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc. Natl. Acad. Sci. USA 99, 9031–9036 (2002).

    Article  CAS  Google Scholar 

  20. Smith, J.M. et al. Inosine promotes recovery of skilled motor function in a model of focal brain injury. Brain 130, 915–925 (2007).

    Article  Google Scholar 

  21. Zai, L. et al. Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J. Neurosci. 29, 8187–8197 (2009).

    Article  CAS  Google Scholar 

  22. Bontioti, E.N., Kanje, M. & Dahlin, L.B. Regeneration and functional recovery in the upper extremity of rats after various types of nerve injuries. J. Peripher. Nerv. Syst. 8, 159–168 (2003).

    Article  Google Scholar 

  23. Lu, T.J. et al. Inhibition of cell migration by autophosphorylated mammalian sterile 20-like kinase 3 (MST3) involves paxillin and protein-tyrosine phosphatase-PEST. J. Biol. Chem. 281, 38405–38417 (2006).

    Article  CAS  Google Scholar 

  24. Martin, K.R., Klein, R.L. & Quigley, H.A. Gene delivery to the eye using adeno-associated viral vectors. Methods 28, 267–275 (2002).

    Article  CAS  Google Scholar 

  25. Sapieha, P.S., Peltier, M., Rendahl, K.G., Manning, W.C. & Di Polo, A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol. Cell. Neurosci. 24, 656–672 (2003).

    Article  CAS  Google Scholar 

  26. Fischer, D., He, Z. & Benowitz, L.I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651 (2004).

    Article  CAS  Google Scholar 

  27. Li, Y., Irwin, N., Yin, Y., Lanser, M. & Benowitz, L.I. Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J. Neurosci. 23, 7830–7838 (2003).

    Article  CAS  Google Scholar 

  28. Schaden, H., Stuermer, C.A. & Bahr, M. GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat. J. Neurobiol. 25, 1570–1578 (1994).

    Article  CAS  Google Scholar 

  29. Kermer, P. et al. Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res. Mol. Brain Res. 85, 144–150 (2000).

    Article  CAS  Google Scholar 

  30. Berkelaar, M., Clarke, D.B., Wang, Y.C., Bray, G.M. & Aguayo, A.J. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J. Neurosci. 14, 4368–4374 (1994).

    Article  CAS  Google Scholar 

  31. Ygge, J. Central projections of the rat radial nerve investigated with transganglionic degeneration and transganglionic transport of horseradish peroxidase. J. Comp. Neurol. 279, 199–211 (1989).

    Article  CAS  Google Scholar 

  32. Markus, A., Zhong, J. & Snider, W.D. Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35, 65–76 (2002).

    Article  CAS  Google Scholar 

  33. Zhong, J. et al. Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat. Neurosci. 10, 598–607 (2007).

    Article  CAS  Google Scholar 

  34. Cowley, S., Paterson, H., Kemp, P. & Marshall, C.J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).

    Article  CAS  Google Scholar 

  35. Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  Google Scholar 

  36. Tucker, B.A., Rahimtula, M. & Mearow, K.M. A procedure for selecting and culturing subpopulations of neurons from rat dorsal root ganglia using magnetic beads. Brain Res. Brain Res. Protoc. 16, 50–57 (2005).

    Article  Google Scholar 

  37. Schwab, M.E. Repairing the injured spinal cord. Science 295, 1029–1031 (2002).

    Article  CAS  Google Scholar 

  38. Aguayo, A.J. et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Phil. Trans. R. Soc. Lond. B 331, 337–343 (1991).

    Article  CAS  Google Scholar 

  39. Dan, I., Watanabe, N.M. & Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11, 220–230 (2001).

    Article  CAS  Google Scholar 

  40. Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197 (1995).

    Article  CAS  Google Scholar 

  41. Fischer, D., Petkova, V., Thanos, S. & Benowitz, L.I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726–8740 (2004).

    Article  CAS  Google Scholar 

  42. Costigan, M. et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 3, 16 (2002).

    Article  Google Scholar 

  43. Bonilla, I.E., Tanabe, K. & Strittmatter, S.M. Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J. Neurosci. 22, 1303–1315 (2002).

    Article  CAS  Google Scholar 

  44. Fan, M., Mi, R., Yew, D.T. & Chan, W.Y. Analysis of gene expression following sciatic nerve crush and spinal cord hemisection in the mouse by microarray expression profiling. Cell. Mol. Neurobiol. 21, 497–508 (2001).

    Article  CAS  Google Scholar 

  45. Benowitz, L.I., Apostolides, P.J., Perrone-Bizzozero, N., Finklestein, S.P. & Zwiers, H. Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J. Neurosci. 8, 339–352 (1988).

    Article  CAS  Google Scholar 

  46. Cui, Q., Yip, H.K., Zhao, R.C., So, K.F. & Harvey, A.R. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol. Cell. Neurosci. 22, 49–61 (2003).

    Article  CAS  Google Scholar 

  47. Moskowitz, P.F. & Oblinger, M.M. Sensory neurons selectively upregulate synthesis and transport of the beta III-tubulin protein during axonal regeneration. J. Neurosci. 15, 1545–1555 (1995).

    Article  CAS  Google Scholar 

  48. Schwalb, J.M. et al. Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture. J. Neurosci. 15, 5514–5525 (1995).

    Article  CAS  Google Scholar 

  49. Leclere, P.G. et al. Effective gene delivery to adult neurons by a modified form of electroporation. J. Neurosci. Methods 142, 137–143 (2005).

    Article  CAS  Google Scholar 

  50. Gavazzi, I., Kumar, R.D., McMahon, S.B. & Cohen, J. Growth responses of different subpopulations of adult sensory neurons to neurotrophic factors in vitro. Eur. J. Neurosci. 11, 3405–3414 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Logan and M. Berry for advice on DRG injections and use of facilities, Y. Yin for surgical assistance in the preliminary optic nerve studies, D. Kim and L. Zai for surgical assistance in the Mst3b activation studies, M.T. Henzl (University of Missouri) for oncomodulin, and the Developmental Disabilities Research Center of Children's Hospital (US National Institutes of Health (NIH) P30 HD018655) for use of core facilities and expertise. We are grateful for the support of the NIH (EY05690 to L.I.B.), the European Union (Marie Curie Outgoing International Fellowship MOIF-CT-2004-008424 to B.L.), Alseres, Inc. and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.L. helped design some of the experiments, carried out most in vivo and in vitro studies, drafted much of paper and did most of the data analysis. M.L.H. assisted with many cell culture studies and in vivo work. L.I.B. helped conceive the overall structure of the study, supervised parts of it, carried out some of the data analysis and wrote parts of the manuscript. N.I. generated the core idea of the study, helped conceive the overall structure of the study, performed preliminary optic nerve studies, constructed the viral vectors, made the mutations in Mstb3, supervised parts of the study, did some of the data analysis and wrote parts of the manuscript.

Corresponding authors

Correspondence to Larry I Benowitz or Nina Irwin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 10170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorber, B., Howe, M., Benowitz, L. et al. Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci 12, 1407–1414 (2009). https://doi.org/10.1038/nn.2414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing