Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serotonergic modulation of odor input to the mammalian olfactory bulb

Abstract

Centrifugal serotonergic fibers innervate the olfactory bulb, but the importance of these projections for olfactory processing is unclear. We examined serotonergic modulation of sensory input to olfactory glomeruli using mice that express synaptopHluorin in olfactory receptor neurons (ORN). Odor-evoked synaptic input to glomeruli was attenuated by increased serotonin signaling through serotonin 2C (5-HT2C) receptors and amplified by decreased serotonergic activity. Intravital multiphoton calcium imaging revealed that 5-HT2C receptor activation amplified odor-evoked activity in a subset of juxtaglomerular cells and attenuated glutamate release from ORN terminals via GABAB receptors. Endogenous serotonin released by electrical stimulation of the dorsal raphe nucleus attenuated odor-evoked responses without detectable bias in glomerular position or odor identity. Weaker glomerular responses, however, were less sensitive to raphe stimulation than strong responses. Our data indicate that the serotonergic system regulates odor inputs in the olfactory bulb and suggest that behavioral states may alter odor processing at the earliest stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Odor-evoked activity of sensory nerve terminals measured in Omp-spH mice and its modulation by serotonin receptors.
Figure 2: Immunohistochemistry reveals 5-HT2C receptor expression by some juxtaglomerular cells, but not by ORN terminals.
Figure 3: Multiphoton imaging reveals 5-HT modulation of juxtaglomerular cell activity.
Figure 4: Modulation of odor-evoked responses by 5-HT receptor ligands is occluded by antagonists of GABAB receptors.
Figure 5: Stimulation of dorsal raphe nucleus triggers a reversible reduction in odor-evoked input to the bulb.
Figure 6: Serotonergic modulation across different response amplitudes.

Similar content being viewed by others

References

  1. Jacobs, B.L. & Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229 (1992).

    Article  CAS  Google Scholar 

  2. Hurley, L.M., Devilbiss, D.M. & Waterhouse, B.D. A matter of focus: monoaminergic modulation of stimulus coding in mammalian sensory networks. Curr. Opin. Neurobiol. 14, 488–495 (2004).

    Article  CAS  Google Scholar 

  3. Jacobs, B.L. & Fornal, C.A. 5-HT and motor control: a hypothesis. Trends Neurosci. 16, 346–352 (1993).

    Article  CAS  Google Scholar 

  4. Daw, N.D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002).

    Article  Google Scholar 

  5. McLean, J.H. & Shipley, M.T. Serotonergic afferents to the rat olfactory bulb. I. Origins and laminar specificity of serotonergic inputs in the adult rat. J. Neurosci. 7, 3016–3028 (1987).

    Article  CAS  Google Scholar 

  6. McLean, J.H. & Shipley, M.T. Serotonergic afferents to the rat olfactory bulb. II. Changes in fiber distribution during development. J. Neurosci. 7, 3029–3039 (1987).

    Article  CAS  Google Scholar 

  7. Aungst, J.L. & Shipley, M.T. Periglomerular cells in mouse olfactory bulb glomeruli: serotonergic modulation. Soc. Neurosci. Abstr. 739.10 (2005).

  8. Hardy, A., Palouzier-Paulignan, B., Duchamp, A., Royet, J.P. & Duchamp-Viret, P. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience 131, 717–731 (2005).

    Article  CAS  Google Scholar 

  9. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  Google Scholar 

  10. Bozza, T., McGann, J.P., Mombaerts, P. & Wachowiak, M. In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42, 9–21 (2004).

    Article  CAS  Google Scholar 

  11. Soucy, E.R., Albeanu, D.F., Fantana, A.L., Murthy, V.N. & Meister, M. Precision and diversity in an odor map on the olfactory bulb. Nat. Neurosci. 12, 210–220 (2009).

    Article  CAS  Google Scholar 

  12. McLean, J.H., Darby-King, A. & Paterno, G.D. Localization of 5-HT2A receptor mRNA by in situ hybridization in the olfactory bulb of the postnatal rat. J. Comp. Neurol. 353, 371–378 (1995).

    Article  CAS  Google Scholar 

  13. Pompeiano, M., Palacios, J.M. & Mengod, G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J. Neurosci. 12, 440–453 (1992).

    Article  CAS  Google Scholar 

  14. Boothman, L., Raley, J., Denk, F., Hirani, E. & Sharp, T. In vivo evidence that 5-HT(2C) receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Br. J. Pharmacol. 149, 861–869 (2006).

    Article  CAS  Google Scholar 

  15. Parrish-Aungst, S., Shipley, M.T., Erdelyi, F., Szabo, G. & Puche, A.C. Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J. Comp. Neurol. 501, 825–836 (2007).

    Article  CAS  Google Scholar 

  16. Wachowiak, M. et al. Inhibition of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. J. Neurophysiol. 94, 2700–2712 (2005).

    Article  CAS  Google Scholar 

  17. Wachowiak, M. & Shipley, M.T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin. Cell Dev. Biol. 17, 411–423 (2006).

    Article  Google Scholar 

  18. Petzold, G.C., Albeanu, D.F., Sato, T.F. & Murthy, V.N. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58, 897–910 (2008).

    Article  CAS  Google Scholar 

  19. McGann, J.P. et al. Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48, 1039–1053 (2005).

    Article  CAS  Google Scholar 

  20. Pírez, N. & Wachowiak, M. In vivo modulation of sensory input to the olfactory bulb by tonic and activity-dependent presynaptic inhibition of receptor neurons. J. Neurosci. 28, 6360–6371 (2008).

    Article  Google Scholar 

  21. Gurden, H., Uchida, N. & Mainen, Z.F. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron 52, 335–345 (2006).

    Article  CAS  Google Scholar 

  22. Brodin, E. et al. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Res. 535, 227–236 (1990).

    Article  CAS  Google Scholar 

  23. Glass, J.D., DiNardo, L.A. & Ehlen, J.C. Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting. Brain Res. 859, 224–232 (2000).

    Article  CAS  Google Scholar 

  24. Hajós-Korcsok, E. & Sharp, T. Electrical stimulation of the dorsal and median raphe nuclei increases extracellular noradrenaline in rat hippocampus: Evidence for a 5-HT-independent mechanism. Pharmacol. Biochem. Behav. 71, 807–813 (2002).

    Article  Google Scholar 

  25. Shea, S.D., Katz, L.C. & Mooney, R. Noradrenergic induction of odor-specific neural habituation and olfactory memories. J. Neurosci. 28, 10711–10719 (2008).

    Article  CAS  Google Scholar 

  26. Aghajanian, G.K. & Marek, G.J. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res. Brain Res. Rev. 31, 302–312 (2000).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11–16 (2005).

    Article  CAS  Google Scholar 

  28. Dacks, A.M., Christensen, T.A. & Hildebrand, J.G. Modulation of olfactory information processing in the antennal lobe of Manduca sexta by serotonin. J. Neurophysiol. 99, 2077–2085 (2008).

    Article  CAS  Google Scholar 

  29. Rhoades, R.W., Bennett-Clarke, C.A., Shi, M.Y. & Mooney, R.D. Effects of 5-HT on thalamocortical synaptic transmission in the developing rat. J. Neurophysiol. 72, 2438–2450 (1994).

    Article  CAS  Google Scholar 

  30. Chen, C. & Regehr, W.G. Presynaptic modulation of the retinogeniculate synapse. J. Neurosci. 23, 3130–3135 (2003).

    Article  CAS  Google Scholar 

  31. Hayar, A., Karnup, S., Ennis, M. & Shipley, M.T. External tufted cells: a major excitatory element that coordinates glomerular activity. J. Neurosci. 24, 6676–6685 (2004).

    Article  CAS  Google Scholar 

  32. Hayar, A., Shipley, M.T. & Ennis, M. Olfactory bulb external tufted cells are synchronized by multiple intraglomerular mechanisms. J. Neurosci. 25, 8197–8208 (2005).

    Article  CAS  Google Scholar 

  33. Olsen, S.R. & Wilson, R.I. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008).

    Article  CAS  Google Scholar 

  34. Aungst, J.L. et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature 426, 623–629 (2003).

    Article  CAS  Google Scholar 

  35. Bloom, F.E., Costa, E. & Salmoiraghi, G.C. Analysis of individual rabbit olfactory bulb neuron responses to the microelectrophoresis of acetylcholine, norepinephrine and serotonin synergists and antagonists. J. Pharmacol. Exp. Ther. 146, 16–23 (1964).

    CAS  PubMed  Google Scholar 

  36. Von Baumgarten, R., Bloom, F.E., Oliver, A.P. & Salmoiraghi, G.C. Response of individual olfactory nerve cells to microelectrophoretically administered chemical substances. Pflugers Arch. 277, 125–140 (1963).

    Article  Google Scholar 

  37. McLean, J.H., Darby-King, A. & Hodge, E. 5-HT2 receptor involvement in conditioned olfactory learning in the neonate rat pup. Behav. Neurosci. 110, 1426–1434 (1996).

    Article  CAS  Google Scholar 

  38. Langdon, P.E., Harley, C.W. & McLean, J.H. Increased beta adrenoceptor activation overcomes conditioned olfactory learning deficits induced by serotonin depletion. Brain Res. Dev. Brain Res. 102, 291–293 (1997).

    Article  CAS  Google Scholar 

  39. Jacobs, B.L. & Fornal, C.A. Activity of brain serotonergic neurons in the behaving animal. Pharmacol. Rev. 43, 563–578 (1991).

    CAS  PubMed  Google Scholar 

  40. Waterhouse, B.D., Devilbiss, D., Seiple, S. & Markowitz, R. Sensorimotor-related discharge of simultaneously recorded, single neurons in the dorsal raphe nucleus of the awake, unrestrained rat. Brain Res. 1000, 183–191 (2004).

    Article  CAS  Google Scholar 

  41. Kepecs, A., Uchida, N. & Mainen, Z.F. Rapid and precise control of sniffing during olfactory discrimination in rats. J. Neurophysiol. 98, 205–213 (2007).

    Article  Google Scholar 

  42. Verhagen, J.V., Wesson, D.W., Netoff, T.I., White, J.A. & Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat. Neurosci. 10, 631–639 (2007).

    Article  CAS  Google Scholar 

  43. Mainen, Z.F. Single unit correlates of decision-making in the dorsal raphe of the rat. Soc. Neurosci. Abstr. 541.3 (2007).

  44. Albeanu, D.F., Soucy, E., Sato, T.F., Meister, M. & Murthy, V.N. LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One 3, e2146 (2008).

    Article  Google Scholar 

  45. Baumann, M.H., Ayestas, M.A., Dersch, C.M. & Rothman, R.B. 1-(m-chlorophenyl)piperazine (mCPP) dissociates in vivo serotonin release from long-term serotonin depletion in rat brain. Neuropsychopharmacology 24, 492–501 (2001).

    Article  CAS  Google Scholar 

  46. Best, A.R. & Regehr, W.G. Serotonin evokes endocannabinoid release and retrogradely suppresses excitatory synapses. J. Neurosci. 28, 6508–6515 (2008).

    Article  CAS  Google Scholar 

  47. Dremencov, E. et al. Hyperfunctionality of serotonin-2C receptor–mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48, 34–42 (2005).

    Article  CAS  Google Scholar 

  48. Günther, S., Maroteaux, L. & Schwarzacher, S.W. Endogenous 5-HT2B receptor activation regulates neonatal respiratory activity in vitro. J. Neurobiol. 66, 949–961 (2006).

    Article  Google Scholar 

  49. Lalley, P.M. The excitability and rhythm of medullary respiratory neurons in the cat are altered by the serotonin receptor agonist 5-methoxy-N,N, dimethyltryptamine. Brain Res. 648, 87–98 (1994).

    Article  CAS  Google Scholar 

  50. Westerink, B.H. & De Vries, J.B. A method to evaluate the diffusion rate of drugs from a microdialysis probe through brain tissue. J. Neurosci. Methods 109, 53–58 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Sato for writing data acquisition and analysis software for all the microscopy, G. Szabo for the GAD65-GFP mice and the members of the Murthy laboratory for numerous discussions. This work was supported in part by the Marie Curie Fellowship Program of the European Union (G.C.P.).

Author information

Authors and Affiliations

Authors

Contributions

G.C.P. and V.N.M. conceived the project. G.C.P. and A.H. conducted the experiments. G.C.P. and V.N.M. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Gabor C Petzold or Venkatesh N Murthy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzold, G., Hagiwara, A. & Murthy, V. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 12, 784–791 (2009). https://doi.org/10.1038/nn.2335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing