Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Representation of negative motivational value in the primate lateral habenula

Abstract

An action may lead to either a reward or a punishment. Therefore, an appropriate action needs to be chosen on the basis of the values of both expected rewards and expected punishments. To understand the underlying neural mechanisms, we conditioned monkeys using a Pavlovian procedure with two distinct contexts: one in which rewards were available and another in which punishments were feared. We found that the population of lateral habenula neurons was most strongly excited by a conditioned stimulus associated with the most unpleasant event in each context: the absence of the reward or the presence of the punishment. The population of lateral habenula neurons was also excited by the punishment itself and inhibited by the reward itself, especially when they were less predictable. These results suggest that the lateral habenula has the potential to adaptively control both reward-seeking and punishment-avoidance behaviors, presumably through its projections to dopaminergic and serotonergic systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pavlovian procedure with two distinct contexts.
Figure 2: Responses of lateral habenula neurons to conditioned stimuli.
Figure 3: Relationship between objective value and conditioned stimulus response.
Figure 4: Changes in the averaged responses of the 49 neurons to 0% reward conditioned stimulus (black) and 0% airpuff conditioned stimulus (gray) after the block context was reversed.
Figure 5: Responses of lateral habenula neurons to unconditioned stimuli.
Figure 6: Responses of lateral habenula neurons to unconditioned stimulus omission.
Figure 7: Relationship between prediction error and unconditioned stimulus response.
Figure 8: Comparison between conditioned stimulus response and unconditioned stimulus response.

Similar content being viewed by others

References

  1. Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C. & Fiez, J.A. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077 (2000).

    Article  CAS  Google Scholar 

  2. O'Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

    Article  CAS  Google Scholar 

  3. Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).

    Article  CAS  Google Scholar 

  4. Nieuwenhuis, S. et al. Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage 25, 1302–1309 (2005).

    Article  Google Scholar 

  5. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    Article  CAS  Google Scholar 

  6. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  Google Scholar 

  7. Paton, J.J., Belova, M.A., Morrison, S.E. & Salzman, C.D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article  CAS  Google Scholar 

  8. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  9. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  10. Sallet, J. et al. Expectations, gains and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 327–336 (2007).

    Article  Google Scholar 

  11. Lau, B. & Glimcher, P.W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008).

    Article  CAS  Google Scholar 

  12. Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 (1996).

    Article  CAS  Google Scholar 

  13. Yamada, H., Matsumoto, N. & Kimura, M. Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J. Neurosci. 24, 3500–3510 (2004).

    Article  CAS  Google Scholar 

  14. Kobayashi, S. et al. Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 51, 861–870 (2006).

    Article  CAS  Google Scholar 

  15. Herkenham, M. & Nauta, W.J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 173, 123–146 (1977).

    Article  CAS  Google Scholar 

  16. Parent, A., Gravel, S. & Boucher, R. The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res. Bull. 6, 23–38 (1981).

    Article  CAS  Google Scholar 

  17. Herkenham, M. & Nauta, W.J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979).

    Article  CAS  Google Scholar 

  18. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  Google Scholar 

  19. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).

    Article  Google Scholar 

  20. Cools, R., Roberts, A.C. & Robbins, T.W. Serotoninergic regulation of emotional and behavioral control processes. Trends Cogn. Sci. 12, 31–40 (2008).

    Article  Google Scholar 

  21. Christoph, G.R., Leonzio, R.J. & Wilcox, K.S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619 (1986).

    Article  CAS  Google Scholar 

  22. Ji, H. & Shepard, P.D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor–mediated mechanism. J. Neurosci. 27, 6923–6930 (2007).

    Article  CAS  Google Scholar 

  23. Wang, R.Y. & Aghajanian, G.K. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197, 89–91 (1977).

    Article  CAS  Google Scholar 

  24. Sutherland, R.J. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 6, 1–13 (1982).

    Article  CAS  Google Scholar 

  25. Lecourtier, L. & Kelly, P.H. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672 (2007).

    Article  CAS  Google Scholar 

  26. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  Google Scholar 

  27. Glimcher, P.W. Indeterminacy in brain and behavior. Annu. Rev. Psychol. 56, 25–56 (2005).

    Article  Google Scholar 

  28. Solomon, R.L. & Corbit, J.D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 81, 119–145 (1974).

    Article  CAS  Google Scholar 

  29. Seymour, B., Singer, T. & Dolan, R. The neurobiology of punishment. Nat. Rev. Neurosci. 8, 300–311 (2007).

    Article  CAS  Google Scholar 

  30. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    Article  CAS  Google Scholar 

  31. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  32. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).

    Article  CAS  Google Scholar 

  33. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).

    Article  CAS  Google Scholar 

  34. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  Google Scholar 

  35. Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  CAS  Google Scholar 

  36. Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).

    Article  Google Scholar 

  37. Lecourtier, L., Defrancesco, A. & Moghaddam, B. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. Eur. J. Neurosci. 27, 1755–1762 (2008).

    Article  Google Scholar 

  38. Yang, L.M., Hu, B., Xia, Y.H., Zhang, B.L. & Zhao, H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav. Brain Res. 188, 84–90 (2008).

    Article  Google Scholar 

  39. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).

    Article  CAS  Google Scholar 

  40. Gandhi, N.J. & Bonadonna, D.K. Temporal interactions of air-puff–evoked blinks and saccadic eye movements: insights into motor preparation. J. Neurophysiol. 93, 1718–1729 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Hong, M. Yasuda and E. Bromberg-Martin for valuable discussion, and M.K. Smith, J.W. McClurkin, A.M. Nichols, T.W. Ruffner, A.V. Hays and L.P. Jensen for technical assistance. This research was supported by the Intramural Research Program at the National Institutes of Health, National Eye Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.M. designed the Pavlovian procedure, performed the experiments and analyzed the data. O.H. supported all of these processes. M.M. and O.H. discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Masayuki Matsumoto.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, M., Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12, 77–84 (2009). https://doi.org/10.1038/nn.2233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing