Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decision-making with multiple alternatives

A Corrigendum to this article was published on 01 July 2008

This article has been updated

Abstract

Simple perceptual tasks have laid the groundwork for understanding the neurobiology of decision-making. Here, we examined this foundation to explain how decision-making circuitry adjusts in the face of a more difficult task. We measured behavioral and physiological responses of monkeys on a two- and four-choice direction-discrimination decision task. For both tasks, firing rates in the lateral intraparietal area appeared to reflect the accumulation of evidence for or against each choice. Evidence accumulation began at a lower firing rate for the four-choice task, but reached a common level by the end of the decision process. The larger excursion suggests that the subjects required more evidence before making a choice. Furthermore, on both tasks, we observed a time-dependent rise in firing rates that may impose a deadline for deciding. These physiological observations constitute an effective strategy for handling increased task difficulty. The differences appear to explain subjects' accuracy and reaction times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task and performance.
Figure 2: Responses of LIP neurons on the four-choice task are consistent with bounded accumulation.
Figure 3: Neural responses in the pre-motion epoch are larger on the two-choice task.
Figure 4: Neural responses during motion viewing depend on difficulty.
Figure 5: Neural responses just preceding the eye-movement responses.
Figure 6: Firing-rate excursion is larger on the four-choice task.
Figure 7: Neural responses and reaction times are inversely correlated on single trials.

Similar content being viewed by others

Change history

  • 17 June 2008

    In the version of this article initially published, the panels in Figure 1 were mislabeled. The correct legend should be ‘Psychometric functions for the 29 experiments that included the 90° control are shown in e. Chronometric functions are shown in f ’. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  2. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  Google Scholar 

  3. Palmer, J., Huk, A.C. & Shadlen, M.N. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5, 376–404 (2005).

    Article  Google Scholar 

  4. Link, S.W. & Heath, R.A. A sequential theory of psychological discrimination. Psychometrika 40, 77–105 (1975).

    Article  Google Scholar 

  5. Laming, D.R.J. Information Theory of Choice-Reaction Times (Wiley, New York, 1968).

    Google Scholar 

  6. Mazurek, M.E., Roitman, J.D., Ditterich, J. & Shadlen, M.N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    Article  Google Scholar 

  7. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  8. Hanks, T.D., Ditterich, J. & Shadlen, M.N. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9, 682–689 (2006).

    Article  CAS  Google Scholar 

  9. Huk, A.C. & Shadlen, M.N. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 10420–10436 (2005).

    Article  CAS  Google Scholar 

  10. Hick, W.E. On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952).

    Article  Google Scholar 

  11. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  12. Leon, M.I. & Shadlen, M.N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).

    Article  CAS  Google Scholar 

  13. Sato, T. & Schall, J.D. Pre-excitatory pause in frontal eye field responses. Exp. Brain Res. 139, 53–58 (2001).

    Article  CAS  Google Scholar 

  14. Kiani, R., Hanks, T.D. & Shadlen, M.N. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J. Neurosci. 28, 3017–3029 (2008).

    Article  CAS  Google Scholar 

  15. Cook, E.P. & Maunsell, J.H. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5, 985–994 (2002).

    Article  CAS  Google Scholar 

  16. Ratcliff, R. et al. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).

    Article  Google Scholar 

  17. Reddi, B.A. & Carpenter, R.H. The influence of urgency on decision time. Nat. Neurosci. 3, 827–830 (2000).

    Article  CAS  Google Scholar 

  18. Reddi, B.A., Asrress, K.N. & Carpenter, R.H. Accuracy, information, and response time in a saccadic decision task. J. Neurophysiol. 90, 3538–35346 (2003).

    Article  CAS  Google Scholar 

  19. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    Article  CAS  Google Scholar 

  20. Vickers, D. Decision Processes in Visual Perception (Academic Press, London, 1979).

    Google Scholar 

  21. Ditterich, J., Mazurek, M.E. & Shadlen, M.N. Microstimulation of visual cortex affects the speed of perceptual decisions. Nat. Neurosci. 6, 891–898 (2003).

    Article  CAS  Google Scholar 

  22. Jazayeri, M. & Movshon, J.A. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446, 912–915 (2007).

    Article  CAS  Google Scholar 

  23. Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

    Article  CAS  Google Scholar 

  24. Churchland, A.K. et al. Directional anisotropies reveal a functional segregation of visual motion processing for perception and action. Neuron 37, 1001–1011 (2003).

    Article  CAS  Google Scholar 

  25. Ratcliff, R. & Rouder, J.N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).

    Article  Google Scholar 

  26. Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford University Press, New York, 1986).

    Google Scholar 

  27. Lo, C.C. & Wang, X.J. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat. Neurosci. 9, 956–963 (2006).

    Article  CAS  Google Scholar 

  28. Usher, M. & McClelland, J.L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  Google Scholar 

  29. McMillen, T. & Holmes, P. The dynamics of choice among multiple alternatives. J. Math. Psychol. 50, 30–57 (2006).

    Article  Google Scholar 

  30. Basso, M.A. & Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).

    Article  CAS  Google Scholar 

  31. Platt, M.L. & Glimcher, P.W. Response fields of intraparietal neurons quantified with multiple saccadic targets. Exp. Brain Res. 121, 65–75 (1998).

    Article  CAS  Google Scholar 

  32. Ben Hamed, S., Duhamel, J.R., Bremmer, F. & Graf, W. Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. Cereb. Cortex 12, 234–245 (2002).

    Article  CAS  Google Scholar 

  33. Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241 (2005).

    Article  CAS  Google Scholar 

  34. Brody, C.D., Hernandez, A., Zainos, A. & Romo, R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196–1207 (2003).

    Article  Google Scholar 

  35. Maimon, G. & Assad, J.A. A cognitive signal for the proactive timing of action in macaque LIP. Nat. Neurosci. 9, 948–955 (2006).

    Article  CAS  Google Scholar 

  36. Ditterich, J. Stochastic models of decisions about motion direction: behavior and physiology. Neural Netw. 19, 981–1012 (2006).

    Article  Google Scholar 

  37. Niwa, M. & Ditterich, J. Perceptual decisions between multiple directions of visual motion. J. Neurosci. 28, 4435–4445 (2008).

    Article  CAS  Google Scholar 

  38. Salzman, C.D. & Newsome, W.T. Neural mechanisms for forming a perceptual decision. Science 264, 231–237 (1994).

    Article  CAS  Google Scholar 

  39. Bogacz, R., Usher, M., Zhang, J. & McClelland, J.L. Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philos. Trans. R Soc. Lond. B Biol. Sci. 362, 1655–1670 (2007).

    Article  Google Scholar 

  40. Nichols, M.J. & Newsome, W.T. Middle temporal visual area microstimulation influences veridical judgments of motion direction. J. Neurosci. 22, 9530–9540 (2002).

    Article  CAS  Google Scholar 

  41. Ma, W.J., Beck, J.M., Latham, P.E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    Article  CAS  Google Scholar 

  42. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  43. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  44. Van Essen, D.C. Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23 Suppl 1: S97–107 (2004).

    Article  Google Scholar 

  45. Gnadt, J.W. & Andersen, R.A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

    CAS  PubMed  Google Scholar 

  46. Thier, P. & Andersen, R.A. Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys. Proc. Natl. Acad. Sci. USA 93, 4962–4967 (1996).

    Article  CAS  Google Scholar 

  47. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  48. Arai, K., McPeek, R.M. & Keller, E.L. Properties of saccadic responses in monkey when multiple competing visual stimuli are present. J. Neurophysiol. 91, 890–900 (2004).

    Article  Google Scholar 

  49. Walker, R., Deubel, H., Schneider, W.X. & Findlay, J.M. Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J. Neurophysiol. 78, 1108–1119 (1997).

    Article  CAS  Google Scholar 

  50. Risken, H. The Fokker-Planck Equation: Methods of Solutions and Applications (Springer, New York, 1989).

    Book  Google Scholar 

Download references

Acknowledgements

We thank A. Boulet, C. Lea, M. Mihali and K. Skypeck for technical assistance. This work was supported by the US National Institutes of Health (EY011378 and RR00166) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne K Churchland.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churchland, A., Kiani, R. & Shadlen, M. Decision-making with multiple alternatives. Nat Neurosci 11, 693–702 (2008). https://doi.org/10.1038/nn.2123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing