Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG–repeat

Abstract

Fragile X syndrome is associated with massive expansion of a CGG trinucleotjde repeat within the FMR–1 gene and transcriptional silencing of the gene due to abnormal methylation. Partial cDNA sequence of the human FMR–1 has been reported. We report here the isolation and characterization of cDNA clones encoding the murine homologue, fmr–1, which exhibit marked sequence identity with the human gene, including the conservation of the CGG repeat. A conserved ATG downstream of the CGG repeat in human and mouse and an in–frame stop codon in other human 5′ cDNA sequences demarcate the FMR–1 coding region and confine the CGG repeat to the 5′ untranslated region. We also present evidence for alternative splicing of the FMR–1 gene in mouse and human brain and show that one of these splicing events alters the FMR–1 reading frame, predicting isoforms with novel carboxy termini.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, W.T. The fragile X: progress towards solving the puzzle. Am. J. hum. Genet. 47, 175–180 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sherman, S.L. et al. The marker (X) syndrome: a cytogenetic and genetic analysis. Ann. Hum. Genet. 48, 21–37 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Sherman, S.L. et al. Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum. Genet. 69, 289–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Lubs, J.A.,Jr. A marker X chromosome. Am. J. hum. Genet. 21, 231–244 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fargile X syndrome. Science 252, 1097–1102 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucieotide repeat sequence p(CGG)n. Science 252, 1711–1714 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Vincent, A. et al. Abnormal pattern detected in fragile-X patients by pulsed-field gel electrophoresis. Nature 349, 624–626 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 24, 1179–1181 (1991).

    Article  Google Scholar 

  10. Fu, Y.H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Bell, M.V. et al. Physical mapping across the fragile X: hypermethylation and clinical expression of fragile X syndrome. Cell 64, 861–866 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Sutcliffe, J.S. et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. molec. Genet. 1, 397–400 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Hinds, H.L. et al. Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nature Genet. 3: 36–43 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Harper, P.S., Harley, H.G., Reardon, W. & Shaw, D.J. Anticipation in myotonic dystrophy: new light on an old problem. Am. J. hum Genet. 51, 10–16 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucieotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. FU, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. La spada, A.R. et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. The Huntington's Disease Collaborative research Group. A novel gene containing a trinucieotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  21. Short, J.M., Fernandez, J.M., Sorge, J.A. & Huse, W.D. IZAP: a bacteriophage I expression vector with in vivo excision properties. Nucl. Acids Res. 16, 7583–7600 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verkerk, A.J.M.H. et al. Alternative splicing in the fragile X (FMR-1) gene. Hum. molec. Genet. 2, 399–404 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Theil, E.C. Regulation of ferritin and transferrin receptor mRNAs. J. Biol. Chem. 265, 4771–4774 (1990).

    CAS  PubMed  Google Scholar 

  24. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kozak, M. Leader length and secondary structure modulate mRNA function under conditions of stress. Molec. cell. Biol. 8, 2737–2744 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  27. Muller, A.J. & Witte, O.N. The 5′ noncoding region of the human leukemia-associated oncogene BCR/ABL is a potent inhibitor of in vitro translation. Molec. cell. Biol. 9, 5234–5238 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Godeau, F., Persson, H., Gray, H.E. & Pardee, A.B. c-myc expression is dissociated from DNA synthesis and cell division in Xenopus oocyte and early embryonic development. EMBO J. 5, 3571–3577 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taylor, M.V.M., Gusse, M., Evan, G.I., Dathan, N. & Mechali, M. Xenopus myc proto-oncogene during development: expression as a stable maternal mRNA uncoupled from cell division. EMBO J. 5, 3563–3570 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual 2nd edn (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  31. Kyte, J. & Doolittle, R.F. A simple method for displaying hydropathic character of a protein. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Chomczynski, P. & Sacchi, N. Single step method of RNA isolation by acid quanidinium thiocyanate -phenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, C., Sutcliffe, J., Kunst, C. et al. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG–repeat. Nat Genet 4, 244–251 (1993). https://doi.org/10.1038/ng0793-244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing