Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests

Abstract

The tail suspension test (TST) and forced swimming test (FST) are widely used for assessing antidepressant activity and depression-like behavior. We found that CS mice show negligible immobility in inescapable situations. Quantitative trait locus (QTL) mapping using CS and C57BL/6J mice revealed significant QTLs on chromosomes 4 (FST) and 5 (TST and FST). To identify the quantitative trait gene on chromosome 5, we narrowed the QTL interval to 0.5 Mb using several congenic and subcongenic strains. Ubiquitin-specific peptidase 46 (Usp46) with a lysine codon deletion was located in this region. This deletion affected nest building, muscimol-induced righting reflex and anti-immobility effects of imipramine. The muscimol-induced current in the hippocampal CA1 pyramidal neurons and hippocampal expression of the 67-kDa isoform of glutamic acid decarboxylase were significantly decreased in the Usp46 mutant mice compared to control mice. These phenotypes were rescued in transgenic mice with bacterial artificial chromosomes containing wild-type Usp46. Thus, Usp46 affects the immobility in the TST and FST, and it is implicated in the regulation of GABA action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage analysis and phenotypes of the chromosome 5 congenic strain.
Figure 2: Identifying the quantitative trait gene on mouse chromosome 5 that influences TST immobility time.
Figure 3: Generations and analysis of BAC transgenic mice.
Figure 4: Behavioral pleiotropism of Usp46 and transgenic rescue.
Figure 5: Usp46 mutation reduces muscimol-induced GABAA receptor–mediated currents but preserves GABAergic mIPSCs.
Figure 6: Usp46 mutation reduces GAD67 immunostaining in the hippocampus.

Similar content being viewed by others

References

  1. Porsolt, R.D., Lepichon, M. & Jalfre, M. Depression—new animal-model sensitive to antidepressant treatments. Nature 266, 730–732 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Steru, L., Chermat, R., Thierry, B. & Simon, P. The tail suspension test—a new method for screening antidepressants in mice. Psychopharmacology (Berl.) 85, 367–370 (1985).

    Article  CAS  Google Scholar 

  3. Cryan, J.F. & Mombereau, C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol. Psychiatry 9, 326–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Cryan, J.F., Mombereau, C. & Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29, 571–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Watanabe, A. et al. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol. 5, e297 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet. 6, 271–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Turri, M.G., Datta, S.R., DeFries, J., Henderson, N.D. & Flint, J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr. Biol. 11, 725–734 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Yoshikawa, T., Watanabe, A., Ishitsuka, Y., Nakaya, A. & Nakatani, N. Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome Res. 12, 357–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Crowley, J.J., Brodkin, E.S., Blendy, J.A., Berrettini, W.H. & Lucki, I. Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 31, 2433–2442 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X., Stancliffe, D., Lee, S., Mathur, S. & Gershenfeld, H.K. Genetic dissection of the tail suspension test: a mouse model of stress vulnerability and antidepressant response. Biol. Psychiatry 62, 81–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lad, H.V., Liu, L., Paya-Cano, J.L., Fernandes, C. & Schalkwyk, L.C. Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mamm. Genome 18, 482–491 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Suzuki, T. et al. Quantitative trait locus analysis of abnormal circadian period in CS mice. Mamm. Genome 12, 272–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Abe, H., Honma, S., Honma, K., Suzuki, T. & Ebihara, S. Functional diversities of two activity components of circadian rhythm in genetical splitting mice (CS strain). J. Comp. Physiol. [A] 184, 243–251 (1999).

    Article  CAS  Google Scholar 

  14. Abe, H., Honma, S. & Honma, K. Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R607–R615 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ebihara, S., Miyazaki, S., Sakamaki, H. & Yoshimura, T. Sleep properties of CS mice with spontaneous rhythm splitting in constant darkness. Brain Res. 980, 121–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Belknap, J.K. et al. QTL analysis and genomewide mutagenesis in mice: complementary genetic approaches to the dissection of complex traits. Behav. Genet. 31, 5–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Flint, J. & Mott, R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev. Genet. 2, 437–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835, 18–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Bourin, M. & Hascoet, M. The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Karl, T., Pabst, R. & von Horsten, S. Behavioral phenotyping of mice in pharmacological and toxicological research. Exp. Toxicol. Pathol. 55, 69–83 (2003).

    Article  PubMed  Google Scholar 

  21. Braff, D.L., Geyer, M.A. & Swerdlow, N.R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl.) 156, 234–258 (2001).

    Article  CAS  Google Scholar 

  22. Mamiya, T. et al. Effects of pre-germinated brown rice on beta-amyloid protein-induced learning and memory deficits in mice. Biol. Pharm. Bull. 27, 1041–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solberg, L.C. et al. Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm. Genome 15, 648–662 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Nijman, S.M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, G.X. et al. Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology 32, 1531–1539 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. DeLorey, T.M., Sahbaie, P., Hashemi, E., Homanics, G.E. & Clark, J.D. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav. Brain Res. 187, 207–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Maguire, J. & Mody, I. GABA(A)R plasticity during pregnancy: relevance to postpartum depression. Neuron 59, 207–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korn, H. & Faber, D.S. Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci. 14, 439–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Liang, J. et al. Mechanisms of reversible GABAA receptor plasticity after ethanol intoxication. J. Neurosci. 27, 12367–12377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meier, E., Belhage, E., Drejer, J. & Schousboe, A. The expression of GABA receptors on cultured cerebellar granule cells is influenced by GABA. in Neurotrophic Activity of GABA During Development (eds. Redburn, D.A. & Shousboe, A.) 139–159 (Alan R. Liss, Inc., New York,, 1987).

    Google Scholar 

  33. Owens, D.F. & Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Broman, K.W., Wu, H., Sen, S. & Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa, A., Hatada, S., Nagamine, Y. & Namikawa, T. Further mapping of quantitative trait loci for postnatal growth in an inter-sub-specific backcross of wild Mus musculus castaneus and C57BL/6J mice. Genet. Res. 85, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Markel, P. et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat. Genet. 17, 280–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Yoshimura, T. et al. Molecular analysis of avian circadian clock genes. Brain Res. Mol. Brain Res. 78, 207–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Abe, K. et al. Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC-end sequence-SNP analysis. Genome Res. 14, 2439–2447 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ukai, M., Maeda, H., Nanya, Y., Kameyama, T. & Matsuno, K. Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol. Biochem. Behav. 61, 247–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Miyamoto, Y. et al. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J. Neurosci. 22, 2335–2342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deacon, R.M. Assessing nest building in mice. Nat. Protoc. 1, 1117–1119 (2006).

    Article  PubMed  Google Scholar 

  43. Mamiya, T., Noda, Y., Nishi, M., Takeshima, H. & Nabeshima, T. Enhancement of spatial attention in nociceptin/orphanin FQ receptor-knockout mice. Brain Res. 783, 236–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ukai, M., Okuda, A. & Mamiya, T. Effects of anticholinergic drugs selective for muscarinic receptor subtypes on prepulse inhibition in mice. Eur. J. Pharmacol. 492, 183–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ghelardini, C. et al. Antisense knockdown of the Shaker-like Kv1.1 gene abolishes the central stimulatory effects of amphetamines in mice and rats. Neuropsychopharmacology 28, 1096–1105 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Miura, M., Saino-Saito, S., Masuda, M., Kobayashi, K. & Aosaki, T. Compartment-specific modulation of GABAergic synaptic transmission by mu-opioid receptor in the mouse striatum with green fluorescent protein-expressing dopamine islands. J. Neurosci. 27, 9721–9728 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niwa, M. et al. A novel molecule “shati” is involved in methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. J. Neurosci. 27, 7604–7615 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Franklin, K.B.J. & Paxinos, G. The Mouse Brain: in Stereotaxic Coordinates (Academic Press, San Diego, 1997).

    Google Scholar 

  49. Kuwahara, M., Sugimoto, M., Tsuji, S., Miyata, S. & Yoshioka, A. Cytosolic calcium changes in a process of platelet adhesion and cohesion on a von Willebrand factor-coated surface under flow conditions. Blood 94, 1149–1155 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the late M. Ukai (Meijo University) for his helpful suggestions and for providing the facilities for the behavioral experiments, A. Yoshiki (RIKEN BRC) for his useful suggestions regarding the rescue experiment with transgenic mice, S. Yasuo (Johann Wolfgang Goethe-University Frankfurt) for her guidance on the in situ hybridization experiment, RIKEN BRC for providing the mice and the Nagoya University Radio-isotope Center for allowing us to use their facilities. This research was supported in part by a Grant-in-Aid for Scientific Research to S.E. and by the Academic Frontier Project for Private Universities (2007–2011) from the Ministry of Education, Culture, Sports, Science and Technology of Japan to T.M and T.N.

Author information

Authors and Affiliations

Authors

Contributions

S.E. designed the experiments, supervised the project and prepared the manuscript. S.T. designed and performed most of the experiments, analyzed the data and prepared the manuscript. H.S. performed the behavioral tests. T.M. and T.K. supervised the behavioral experiments. T.N. organized GABA-related experiments, and M.Mi, T.A. and M.Ma. performed electrophysiological experiments. M.N. contributed to histological examination. J.K., S.I. and A.I. conducted the QTL analysis. K.A. supervised the production of BAC transgenic mice. Y.I. and S.I. contributed to congenic strain breeding and phenotyping. T.Y. provided the facilities and provided technical support.

Corresponding author

Correspondence to Shizufumi Ebihara.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–8 (PDF 1431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomida, S., Mamiya, T., Sakamaki, H. et al. Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat Genet 41, 688–695 (2009). https://doi.org/10.1038/ng.344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing