Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying off-target effects and hidden phenotypes of drugs in human cells

Abstract

We present a strategy for identifying off-target effects and hidden phenotypes of drugs by directly probing biochemical pathways that underlie therapeutic or toxic mechanisms in intact, living cells. High-content protein-fragment complementation assays (PCAs) were constructed with synthetic fragments of a mutant fluorescent protein ('Venus', EYFP or both), allowing us to measure spatial and temporal changes in protein complexes in response to drugs that activate or inhibit particular pathways. One hundred and seven different drugs from six therapeutic areas were screened against 49 different PCA reporters for ten cellular processes. This strategy reproduced known structure-function relationships and also predicted 'hidden,' potent antiproliferative activities for four drugs with novel mechanisms of action, including disruption of mitochondrial membrane potential. A simple algorithm identified a 25-assay panel that was highly predictive of antiproliferative activity, and the predictive power of this approach was confirmed with cross-validation tests. This study suggests a strategy for therapeutic discovery that identifies novel, unpredicted mechanisms of drug action and thereby enhances the productivity of drug-discovery research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for pharmacological profiling of compounds with high-content PCAs.
Figure 2: Drug activities by assay.
Figure 3: Clustering of compounds by assay response shows defined structure-function relationships.
Figure 4: Supercluster from Figure 3a reveals compounds with potential hidden phenotypes.
Figure 5: Identifying hidden phenotypes and underlying biochemical mechanisms.

Similar content being viewed by others

References

  1. Stoughton, R.B. & Friend, S.H. How molecular profiling could revolutionize drug discovery. Nat. Rev. Drug Discov. 4, 345–350 (2005).

    CAS  PubMed  Google Scholar 

  2. Tian, Q. et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol. Cell. Proteomics 3, 960–969 (2004).

    CAS  PubMed  Google Scholar 

  3. Miklos, G.L. & Maleszka, R. Microarray reality checks in the context of a complex disease. Nat. Biotechnol. 22, 615–621 (2004).

    CAS  PubMed  Google Scholar 

  4. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    CAS  Google Scholar 

  5. Michnick, S.W., Remy, I., Campbell-Valois, F.X., Vallee-Belisle, A. & Pelletier, J.N. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 328, 208–230 (2000).

    CAS  PubMed  Google Scholar 

  6. Remy, I. & Michnick, S.W. Visualization of biochemical networks in living cells. Proc. Natl. Acad. Sci. USA 98, 7678–7683 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    CAS  PubMed  Google Scholar 

  8. Yu, H. et al. Measuring drug action in the cellular context using protein-fragment complementation assays. Assay Drug Dev. Technol. 1, 811–822 (2003).

    CAS  PubMed  Google Scholar 

  9. Remy, I. & Michnick, S.W. Mapping biochemical networks with protein-fragment complementation assays. Methods Mol. Biol. 261, 411–426 (2004).

    CAS  PubMed  Google Scholar 

  10. Remy, I. & Michnick, S.W. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods 32, 381–388 (2004).

    CAS  PubMed  Google Scholar 

  11. Remy, I. & Michnick, S.W. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol. Cell. Biol. 24, 1493–1504 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Remy, I., Montmarquette, A. & Michnick, S.W. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat. Cell Biol. 6, 358–365 (2004).

    CAS  PubMed  Google Scholar 

  13. Nyfeler, B., Michnick, S.W. & Hauri, H.P. Capturing protein interactions in the secretory pathway of living cells. Proc. Natl. Acad. Sci. USA 102, 6350–6355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    CAS  PubMed  Google Scholar 

  15. Fang, D. & Kerppola, T.K. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc. Natl. Acad. Sci. USA 101, 14782–14787 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J., Ferguson, S.S., Barak, L.S., Menard, L. & Caron, M.G. Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J. Biol. Chem. 271, 18302–18305 (1996).

    CAS  PubMed  Google Scholar 

  17. Lin, F.T. et al. Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry 41, 10692–10699 (2002).

    CAS  PubMed  Google Scholar 

  18. Nolte, R.T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395, 137–143 (1998).

    CAS  PubMed  Google Scholar 

  19. Winter-Vann, A.M. & Casey, P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).

    CAS  PubMed  Google Scholar 

  20. Maki, C.G., Huibregtse, J.M. & Howley, P.M. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res. 56, 2649–2654 (1996).

    CAS  PubMed  Google Scholar 

  21. Treier, M., Staszewski, L.M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787–798 (1994).

    CAS  PubMed  Google Scholar 

  22. Nefsky, B. & Beach, D. Pub1 acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J. 15, 1301–1312 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Murray, A. Cyclin ubiquitination: the destructive end of mitosis. Cell 81, 149–152 (1995).

    CAS  PubMed  Google Scholar 

  24. Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fotsis, T. et al. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 57, 2916–2921 (1997).

    CAS  PubMed  Google Scholar 

  26. Hoessel, R. et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol. 1, 60–67 (1999).

    CAS  PubMed  Google Scholar 

  27. Benzaquen, L.R., Brugnara, C., Byers, H.R., Gatton-Celli, S. & Halperin, J.A. Clotrimazole inhibits cell proliferation in vitro and in vivo. Nat. Med. 1, 534–540 (1995).

    CAS  PubMed  Google Scholar 

  28. Neckers, L., Schulte, T.W. & Mimnaugh, E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest. New Drugs 17, 361–373 (1999).

    CAS  PubMed  Google Scholar 

  29. Tuynder, M. et al. Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl. Acad. Sci. USA 101, 15364–15369 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Keblys, M. et al. The effects of the Penicillium mycotoxins citrinin, cyclopiazonic acid, ochratoxin A, patulin, penicillic acid, and roquefortine C on in vitro proliferation of porcine lymphocytes. Mycopathologia 158, 317–324 (2004).

    PubMed  Google Scholar 

  31. Seigle-Murandi, F., Steiman, R., Krivobok, S., Beriel, H. & Benoit-Guyod, J.L. Antitumor activity of patulin and structural analogs. Pharmazie 47, 288–291 (1992).

    CAS  PubMed  Google Scholar 

  32. Weinbach, E.C. & Garbus, J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature 221, 1016–1018 (1969).

    CAS  PubMed  Google Scholar 

  33. Burghardt, R.C. et al. Patulin-induced cellular toxicity: a vital fluorescence study. Toxicol. Appl. Pharmacol. 112, 235–244 (1992).

    CAS  PubMed  Google Scholar 

  34. Minnich, A., Tian, N., Byan, L. & Bilder, G. A potent PPARα agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 280, E270–E279 (2001).

    CAS  PubMed  Google Scholar 

  35. Froyland, L. et al. Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism. J. Lipid Res. 38, 1851–1858 (1997).

    CAS  PubMed  Google Scholar 

  36. Zhou, S. & Wallace, K.B. The effect of peroxisome proliferators on mitochondrial bioenergetics. Toxicol. Sci. 48, 82–89 (1999).

    CAS  PubMed  Google Scholar 

  37. Nam, S. et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc. Natl. Acad. Sci. USA 102, 5998–6003 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wald, N. & Cuckle, H. Reporting the assessment of screening and diagnostic tests. Br. J. Obstet. Gynaecol. 96, 389–396 (1989).

    CAS  PubMed  Google Scholar 

  39. Parsonnet, J. & Axon, A.T. Principles of screening and surveillance. Am. J. Gastroenterol. 91, 847–849 (1996).

    CAS  PubMed  Google Scholar 

  40. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  41. Galarneau, A., Primeau, M., Trudeau, L.E. & Michnick, S.W. β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622 (2002).

    CAS  PubMed  Google Scholar 

  42. Leveson-Gower, D.B., Michnick, S.W. & Ling, V. Detection of TAP family dimerizations by an in vivo assay in mammalian cells. Biochemistry 43, 14257–14264 (2004).

    CAS  PubMed  Google Scholar 

  43. Pelletier, J.N., Campbell-Valois, F. & Michnick, S.W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. USA 95, 12141–12146 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Subramaniam, R., Desveaux, D., Spickler, C., Michnick, S.W. & Brisson, N. Direct visualization of protein interactions in plant cells. Nat. Biotechnol. 19, 769–772 (2001).

    CAS  PubMed  Google Scholar 

  45. Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Ward, J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    Google Scholar 

  47. Reers, M., Smith, T.W. & Chen, L.B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30, 4480–4486 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Smith, M. West and the molecular biology staff at Odyssey Thera for excellent technical support. S.W.M. is the Canada Research Chair in Integrative Genomics. This manuscript is dedicated to the memory of Anthony V. Carrano.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen W Michnick or John K Westwick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Enhanced sensitivity of IFP PCA versus EYFP (enhanced YFP) (PDF 61 kb)

Supplementary Fig. 2

Details of Figure 2 matrix showing compound activity versus PCA at different time points and additional treatments (PDF 166 kb)

Supplementary Fig. 3

Assay response matrix from Figure 5c (PDF 51 kb)

Supplementary Table 1

Assay components and assay conditions (PDF 88 kb)

Supplementary Table 2

Drugs and their screening doses (PDF 54 kb)

Supplementary Table 3

Effects of compounds on proliferation of PC3 Cells (PDF 57 kb)

Supplementary Table 4

Assay statistics and positive predictive values (PPVs) for the top 25 assays, and results of leave-n-out analyses (PDF 78 kb)

Supplementary Methods (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, M., Lamerdin, J., Owens, S. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2, 329–337 (2006). https://doi.org/10.1038/nchembio790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing