Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shank3 mutant mice display autistic-like behaviours and striatal dysfunction

Abstract

Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan–McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excessive grooming, skin lesions and anxiety-like behaviour in Shank3B −/− mice.
Figure 2: Reduced social interaction and abnormal social novelty recognition in Shank3B −/− mice.
Figure 3: Biochemical changes in striatal synapses of Shank3B −/− mice.
Figure 4: Morphological and ultrastructural neuronal abnormalities in Shank3B −/− mice.
Figure 5: Reduced cortico-striatal synaptic transmission in Shank3B −/− MSNs.

Similar content being viewed by others

References

  1. American Psychiatric Association Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders: DSM-IV-TR (American Psychiatric Association, 2000)

  2. Rosenberg, R. E. et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 163, 907–914 (2009)

    Article  Google Scholar 

  3. Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology. Nature Rev. Genet. 9, 341–355 (2008)

    Article  CAS  Google Scholar 

  4. Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 19, 231–234 (2009)

    Article  CAS  Google Scholar 

  5. Zoghbi, H. Y. Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302, 826–830 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genet. 42, 489–491 (2010)

    Article  MathSciNet  CAS  Google Scholar 

  9. Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genet. 39, 25–27 (2006)

    Article  Google Scholar 

  10. Prasad, C. et al. Genetic evaluation of pervasive developmental disorders: the terminal 22q13 deletion syndrome may represent a recognizable phenotype. Clin. Genet. 57, 103–109 (2000)

    Article  CAS  Google Scholar 

  11. Wilson, H. L. et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J. Med. Genet. 40, 575–584 (2003)

    Article  CAS  Google Scholar 

  12. Moessner, R. et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 81, 1289–1297 (2007)

    Article  CAS  Google Scholar 

  13. Gauthier, J. et al. Novel de novo SHANK3 mutation in autistic patients. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B, 421–424 (2009)

    Article  CAS  Google Scholar 

  14. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997)

    Article  CAS  Google Scholar 

  15. Takeuchi, M. et al. SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem. 272, 11943–11951 (1997)

    Article  CAS  Google Scholar 

  16. Zoghbi, H. Y. & Warren, S. T. Neurogenetics: advancing the “next-generation” of brain research. Neuron 68, 165–173 (2010)

    Article  CAS  Google Scholar 

  17. Moy, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302 (2004)

    Article  CAS  Google Scholar 

  18. Hung, A. Y. et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J. Neurosci. 28, 1697–1708 (2008)

    Article  CAS  Google Scholar 

  19. Redcay, E. & Courchesne, E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol. Psychiatry 58, 1–9 (2005)

    Article  Google Scholar 

  20. Langen, M. et al. Changes in the developmental trajectories of striatum in autism. Biol. Psychiatry 66, 327–333 (2009)

    Article  Google Scholar 

  21. Hollander, E. et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol. Psychiatry 58, 226–232 (2005)

    Article  Google Scholar 

  22. Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 19, 231–234 (2009)

    Article  CAS  Google Scholar 

  23. Kwon, C. H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006)

    Article  CAS  Google Scholar 

  24. Bonaglia, M. C. et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J. Med. Genet. 43, 822–828 (2006)

    Article  CAS  Google Scholar 

  25. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997)

    Article  CAS  Google Scholar 

  26. Kim, H. G. et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am. J. Hum. Genet. 82, 199–207 (2008)

    Article  CAS  Google Scholar 

  27. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet. 34, 27–29 (2003)

    Article  CAS  Google Scholar 

  28. Silk, T. J. et al. Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: a functional MRI study. Am. J. Psychiatry 163, 1440–1443 (2006)

    Article  Google Scholar 

  29. Horwitz, B., Rumsey, J. M., Grady, C. L. & Rapoport, S. I. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch. Neurol. 45, 749–755 (1988)

    Article  CAS  Google Scholar 

  30. Sears, L. L. et al. An MRI study of the basal ganglia in autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 613–624 (1999)

    Article  CAS  Google Scholar 

  31. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Shmelkov, S. V. et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nature Med. 16, 598–602 (2010)

    Article  CAS  Google Scholar 

  33. Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008)

    Article  CAS  Google Scholar 

  34. McFarlane, H. G. et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 7, 152–163 (2008)

    Article  CAS  Google Scholar 

  35. Blundell, J. et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J. Neurosci. 30, 2115–2129 (2010)

    Article  CAS  Google Scholar 

  36. Etherton, M. R., Blaiss, C. A., Powell, C. M. & Sudhof, T. C. Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc. Natl Acad. Sci. USA 106, 17998–18003 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Insel, T. R. & Fernald, R. D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004)

    Article  CAS  Google Scholar 

  38. Ebstein, R. P., Israel, S., Chew, S. H., Zhong, S. & Knafo, A. Genetics of human social behavior. Neuron 65, 831–844 (2010)

    Article  CAS  Google Scholar 

  39. Welch, J. M., Wang, D. & Feng, G. Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. J. Comp. Neurol. 472, 24–39 (2004)

    Article  CAS  Google Scholar 

  40. Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols 1, 848–858 (2006)

    Article  Google Scholar 

  41. Yin, H. H., Davis, M. I., Ronesi, J. A. & Lovinger, D. M. The role of protein synthesis in striatal long-term depression. J. Neurosci. 26, 11811–11820 (2006)

    Article  CAS  Google Scholar 

  42. Malenka, R. C. & Kocsis, J. D. Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro . J. Neurosci. 8, 3750–3756 (1988)

    Article  CAS  Google Scholar 

  43. Myme, C. I., Sugino, K., Turrigiano, G. G. & Nelson, S. B. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J. Neurophysiol. 90, 771–779 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Duarte, S. Chaterjee and A. Oliveira-Maia for discussions; L. Kruger and Q. Liu for technical assistance; A. Hadiono for assistance in behavioural annotation; D. Bredt for the PSD-93 antibody; T. Boeckers for the anti-SHANK3 antibody; S. Miller and P. Christopher for advice and assistance with electron microscopy techniques; J. Crawley for the demonstration of social behaviour tests; N. Calakos and Y. Wan for advice on electrophysiology studies; A. Graybiel for critical comments of the manuscript; D. Wang and the other members of the G.F. laboratory for their support. We thank The Poitras Center for Affective Disorders Research. This work was funded by a grant from NIMH/NIH (R01MH081201), a Hartwell Individual Biomedical Research Award from The Hartwell Foundation, and a Simons Foundation Autism Research Initiative (SFARI) grant Award to G.F.; a NARSAD Young Investigator Award and NIH Ruth L. Kirschstein National Research Service Award (F32MH084460) to J.T.T.; a NIH (R03MH085224) grant to Z.F.; and doctoral fellowships from the Portuguese Foundation for Science and Technology to J.P. (SFRH/BD/15231/2004) and C.F. (SFRH/BD/15855/2005). C.F. would like to acknowledge the support from the “Programa Gulbenkian de Doutoramento em Biomedicina” (PGDB, Oeiras, Portugal) and J.P. the “Programa Doutoral em Biologia Experimental e Biomedicina” (CNC, Coimbra, Portugal).

Author information

Authors and Affiliations

Authors

Contributions

J.P., C.F., J.T.T., W.W., M.F.W., T.N.V., C.D.L. and Z.F. participated in the execution and analysis of experiments. J.P., C.F., J.T.T., C.D.L, Z.F. and G.F participated in the interpretation of the results. J.P., C.F. and G.F. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Guoping Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-15 with legends and Supplementary Tables 1-2. (PDF 8997 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peça, J., Feliciano, C., Ting, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011). https://doi.org/10.1038/nature09965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09965

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing