Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glial and neuronal control of brain blood flow

Abstract

Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy supply, usage and blood flow regulation in the brain.
Figure 2: Major pathways by which glutamate regulates cerebral blood flow.
Figure 3: Arachidonic acid metabolites that may contribute to control of cerebral blood flow.
Figure 4: Nitric oxide inhibits the production of key arachidonic acid-derived messengers.
Figure 5: Oxygen differentially affects the synthesis of neurovascular messengers.
Figure 6: Lactate and adenosine affect neurovascular signalling at low [O2].

Similar content being viewed by others

References

  1. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Leffler, C. W., Busija, D. W., Mirro, R., Armstead, W. M. & Beasley, D. G. Effects of ischemia on brain blood flow and oxygen consumption of newborn pigs. Am. J. Physiol. 257, H1917–H1926 (1989).

    CAS  PubMed  Google Scholar 

  3. Girouard, H. & Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100, 328–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Baptiste, D. C. & Fehlings, M. Pharmacological approaches to repair the injured spinal cord. J. Neurotrauma 23, 318–334 (2006).

    Article  PubMed  Google Scholar 

  5. Tian, R. et al. Role of extracellular and intracellular acidosis for hypercapnia-induced inhibition of tension of isolated rat cerebral arteries. Circ. Res. 76, 269–275 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Mintun, M. A. et al. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc. Natl Acad. Sci USA 98, 6859–6864 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindauer, U. et al. Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation. J. Cereb. Blood Flow Metab. 30, 757–768 (2010). Challenges brain slice data showing that high [O 2 ] converts dilations seen at physiological [O 2 ] into constrictions.

    Article  PubMed  Google Scholar 

  8. Powers, W. J., Hirsch, I. B. & Cryer, P. E. Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological brain activation. Am. J. Physiol. 270, H554–H559 (1996).

    CAS  PubMed  Google Scholar 

  9. Astrup, J. et al. Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study. Ciba Found. Symp. 56, 313–337 (1978).

    CAS  Google Scholar 

  10. Makani, S. & Chesler, M. Rapid rise of extracellular pH evoked by neural activity is generated by the plasma membrane calcium ATPase. J. Neurophysiol. 103, 667–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ko, K. R., Ngai, A. C. & Winn, H. R. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am. J. Physiol. Heart Circ. Physiol. 259, H1703–H1708 (1990).

    Article  CAS  Google Scholar 

  12. Ido, Y., Chang, K., Woolsey, T. A. & Williamson, J. R. NADH: sensor of blood flow need in brain, muscle and other tissues. FASEB J. 15, 1419–1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Akgören, N., Fabricius, M. & Lauritzen, M. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc. Natl Acad. Sci. USA 91, 5903–5907 (1994).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Li, J. & Iadecola, C. Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex. Neuropharmacology 33, 1453–1461 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen, A. N. & Lauritzen, M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J. Physiol. 533, 773–785 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  17. Chaigneau, E. et al. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J. Neurosci. 27, 6452–6460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Offenhauser, N., Thomsen, K., Caesar, K. & Lauritzen, M. Activity induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J. Physiol. 565, 279–294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lecoq, J. et al. Odor-evoked oxygen consumption by action potential and synaptic transmission in the olfactory bulb. J. Neurosci. 29, 1424–1433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. St Lawrence, K. S., Ye, F. Q., Lewis, B. K., Frank, J. A. & McLaughlin, A. C. Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magn. Reson. Med. 50, 99–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Busija, D. W., Bari, F., Domoki, F. & Louis, T. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-D-aspartate in cerebral cortex. Brain Res. Rev. 56, 89–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, J., Ayata, C., Huang, P. L., Fishman, M. C. & Moskowitz, M. A. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am. J. Physiol. 270, H1085–H1090 (1996).

    CAS  PubMed  Google Scholar 

  23. Lindauer, U., Megow, D., Matsuda, H. & Dirnagl, U. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am. J. Physiol. Heart Circ. Physiol. 277, H799–H811 (1999).

    Article  CAS  Google Scholar 

  24. Akgören, N., Dalgaard, P. & Lauritzen, M. Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis. Brain Res. 710, 204–214 (1996).

    Article  PubMed  Google Scholar 

  25. Yang, G., Zhang, Y., Ross, M. E. & Iadecola, C. Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 285, H298–H304 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kocharyan, A., Fernandes, P., Tong, X. K., Vaucher, E. & Hamel, E. Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J. Cereb. Blood Flow Metab. 28, 221–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Knot, H. J., Zimmermann, P. A. & Nelson, M. T. Extracellular K+-induced hyperpolarizations and dilations of rat coronary and cerebral arteries involve inward rectifier K+ channels. J. Physiol. 492, 419–430 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulson, O. B. & Newman, E. A. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metea, M. R., Kofuji, P. & Newman, E. A. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J. Neurosci. 27, 2468–2471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Filosa, J. A. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nature Neurosci. 9, 1397–1403 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ou, J. W. et al. Ca2+- and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: from microtubules to the plasma membrane. Glia 57, 1280–1295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Metea, M. R. & Newman, E. A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordon, G. R. J. et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745–749 (2008). Shows that O 2 level profoundly affects vascular response to neuronal activity.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng, X. et al. Suppression of functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am. J. Physiol. Heart Circ. Physiol. 283, H2029–H2037 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Peng, X., Zhang, C., Alkayed, N. J., Harder, D. R. & Koehler, R. C. Dependency of cortical functional hyperemia to forepaw stimulation on epoxygenase and nitric oxide synthase activities in rats. J. Cereb. Blood Flow Metab. 24, 509–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Davis, R. J. et al. EP4 prostanoid receptor-mediated vasodilation of human middle cerebral arteries. Br. J. Pharmacol. 141, 580–585 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takata, F. et al. Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neurosci. Lett. 449, 71–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Serebryakov, V., Zakharenko, S., Snetkov, V. & Takeda, K. Effects of prostaglandins E1 and E2 on cultured smooth muscle cells and strips of rat aorta. Prostaglandins 47, 353–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Campbell, W. B., Gebremedhin, D., Pratt, P. F. & Harder, D. R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 78, 415–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Behm, D. J., Ogbonna, A., Wu, C., Burns-Kurtis, C. L. & Douglas, S. A. Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: identification of a novel mechanism of vasodilation. J. Pharmacol. Exp. Ther. 328, 231–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Takano, T. et al. Astrocyte mediated control of cerebral blood flow. Nature Neurosci. 9, 260–267 (2006). Extends, to the in vivo situation, the Zonta et al . (2003) result that astrocytes control cerebral blood flow.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  44. Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Blanco, V. M., Stern, J. E. & Filosa, J. Tone-dependent vascular responses to astrocyte-derived signals. Am. J. Physiol. Heart Circ. Physiol. 294, H2855–H2863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chuquet, J., Hollender, L. & Nimchinsky, E. A. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci. 27, 4036–4044 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kis, B., Snipes, J. A., Isse, T., Nagy, K. & Busija, D. W. Putative cyclooxygenase-3 expression in rat brain cells. J. Cereb. Blood Flow Metab. 23, 1287–1292 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hirst, W. D. et al. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol. Cell. Neurosci. 13, 57–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Niwa, K., Araki, E., Morham, S. G., Ross, M. E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petzold, G. C., Albeanu, D. F., Sato, T. F. & Murthy, V. N. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58, 897–910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Doengi, M. et al. GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc. Natl Acad. Sci. USA 106, 17570–17575 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lauritzen, M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nature Rev. Neurosci. 6, 77–85 (2005).

    Article  CAS  Google Scholar 

  54. Winship, I. R., Plaa, N. & Murphy, T. H. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo . J. Neurosci. 27, 6268–6272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mathiesen, C., Caesar, K., Akgören, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. 512, 555–566 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Enager, P. et al. Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. J. Cereb. Blood Flow Metab. 29, 976–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo . Nature Neurosci. 9, 816–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Lindauer, U., Megow, D., Schultze, J., Weber, J. R. & Dirnagl, U. Nitric oxide synthase inhibition does not affect somatosensory evoked potentials in the rat. Neurosci. Lett. 216, 207–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, G., Chen, G., Ebner, T. J. & Iadecola, C. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol. 277, R1760–R1770 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Caesar, K., Akgören, N., Mathiesen, C. & Lauritzen, M. Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J. Physiol. 520, 281–292 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Golanov, E. V. & Reis, D. J. Nitric oxide and prostanoids participate in cerebral vasodilation elicited by electrical stimulation of the rostral ventrolateral medulla. J. Cereb. Blood Flow Metab. 14, 492–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Hoffmeyer, H. W., Enager, P., Thomsen, K. J. & Lauritzen, M. J. Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J. Cereb. Blood Flow Metab. 27, 575–587 (2007).

    Article  PubMed  Google Scholar 

  63. Akgören, N., Mathiesen, C., Rubin, I. & Lauritzen, M. Laminar analysis of activity-dependent increases of CBF in rat cerebellar cortex: dependence on synaptic strength. Am. J. Physiol. 273, H1166–H1176 (1997).

    PubMed  Google Scholar 

  64. Roman, R. J. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Fujimoto, Y., Uno, E. & Sakuma, S. Effect of reactive oxygen and nitrogen species on cyclooygenase-1 and -2 activities. Prostaglandins Leukot. Essent. Fatty Acids 71, 335–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Sun, C. W., Falck, J. R., Okamoto, H., Harder, D. R. & Roman, R. J. Role of cGMP versus 20-HETE in the vasodilator response to nitric oxide in rat cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 279, H339–H350 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Stuehr, D. J., Santolini, J., Wang, Z., Wei, C. & Adak, S. Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem. 279, 36167–36170 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Harder, D. R. et al. Identification of a putative microvascular oxygen sensor. Circ. Res. 79, 54–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Juránek, I., Suzuki, H. & Yamamoto, S. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim. Biophys. Acta 1436, 509–518 (1999).

    Article  PubMed  Google Scholar 

  70. Hall, C. N. & Attwell, D. Assessing the physiological concentration and targets of nitric oxide in brain tissue. J. Physiol. 586, 3597–3615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Caesar, K. et al. Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo . J. Physiol. 586, 1337–1349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hamilton, N. B., Attwell, D. & Hall, C. N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shepro, D. & Morel, N. M. Pericyte physiology. FASEB J. 7, 1031–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Puro, D. G. Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 14, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yemişçi, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Med. 15, 1031–1037 (2009). Shows that pericyte constriction decreases blood flow after stroke.

    Article  PubMed  CAS  Google Scholar 

  77. Lovick, T. A., Brown, L. A. & Key, B. J. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92, 47–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Lu, K. et al. Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model. Am. J. Physiol. Heart Circ. Physiol. 286, H584–H601 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Boas, D. A., Jones, S. R., Devor, A., Huppert, T. J. & Dale, A. M. A vascular anatomical network model of the spatio-temporal response to brain activation. Neuroimage 40, 1116–1129 (2008).

    Article  PubMed  Google Scholar 

  80. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Schölvinck, M., Howarth, C. & Attwell, D. The cortical energy needed for conscious perception. Neuroimage 40, 1460–1468 (2008).

    Article  PubMed  Google Scholar 

  82. Lin, A. L., Fox, P. T., Hardies, J., Duong, T. Q. & Gao, J. H. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl Acad. Sci. USA 107, 8446–8451 (2010). Important quantification of the relative magnitudes of stimulus-induced changes in blood flow, O 2 use and ATP generation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activation. Science 241, 462–464 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Madsen, P. L., Cruz, N. F., Sokoloff, L. & Dienel, G. A. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J. Cereb. Blood Flow Metab. 19, 393–400 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Mangia, S. et al. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J. Cereb. Blood Flow Metab. 29, 441–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Buxton, R. B. & Frank, L. R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17, 64–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Leithner, C. et al. Pharmacological uncoupling of activation induced increases in CBF and CMRO2 . J. Cereb. Blood Flow Metab. 30, 311–322 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Uğurbil, K. et al. Magnetic resonance studies of brain function and neurochemistry. Annu. Rev. Biomed. Eng. 2, 233–260 (2000).

    Article  Google Scholar 

  89. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 1517–1531 (2001).

    Article  Google Scholar 

  91. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500, 409–440 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hillman, E. M. et al. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35, 89–104 (2007).

    Article  PubMed  Google Scholar 

  93. Hall, C. N. & Garthwaite, J. What is the real physiological NO concentration in vivo? Nitric Oxide 21, 92–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 117, 199–210 (1994).

    Article  PubMed  Google Scholar 

  95. Fabricius, M. et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129, 778–790 (2006).

    Article  PubMed  Google Scholar 

  96. Dohmen, C. et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann. Neurol. 63, 720–728 (2008).

    Article  PubMed  Google Scholar 

  97. Dreier, J. P. et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129, 3224–3237 (2006).

    Article  PubMed  Google Scholar 

  98. Hansen, A. J. & Zeuthen, T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113, 437–445 (1981).

    Article  CAS  PubMed  Google Scholar 

  99. Van Harreveld, A. & Kooiman, M. Amino acid release from the cerebral cortex during spreading depression and asphyxiation. J. Neurochem. 12, 431–439 (1965).

    Article  CAS  Google Scholar 

  100. Barbour, B., Brew, H. & Attwell, D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335, 433–435 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Piilgaard, H. & Lauritzen, M. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J. Cereb. Blood Flow Metab. 29, 1517–1527 (2009). Quantifies changes in energy use, blood flow and neurovascular coupling after spreading depression.

    Article  CAS  PubMed  Google Scholar 

  102. Takano, T. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nature Neurosci. 10, 754–762 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Hashemi, P. et al. Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão's spreading depression. J. Cereb. Blood Flow Metab. 29, 166–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Busija, D. W., Bari, F., Domoki, F., Horiguchi, T. & Shimizu, K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog. Neurobiol. 86, 379–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Fabricius, M., Akgören, N. & Lauritzen, M. Arginine–nitric oxide pathway and cerebrovascular regulation in cortical spreading depression. Am. J. Physiol. 269, H23–H29 (1995).

    CAS  PubMed  Google Scholar 

  106. Wahl, M., Schilling, L., Parsons, A. A. & Kaumann, A. Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res. 637, 204–210 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Wahl, M., Lauritzen, M. & Schilling, L. Changes of cerebrovascular reactivity after cortical spreading depression in cats and rats. Brain Res. 411, 72–80 (1987).

    Article  CAS  PubMed  Google Scholar 

  108. Scheckenbach, K. E., Dreier, J. P., Dirnagl, U. & Lindauer, U. Impaired cerebrovascular reactivity after cortical spreading depression in rats: restoration by nitric oxide or cGMP. Exp. Neurol. 202, 449–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ames, A. III, Wright, R. L., Kowada, M., Thurston, J. M. & Majno, G. Cerebral ischaemia. II. The no-reflow phenomenon. Am. J. Pathol. 52, 437–453 (1968).

    PubMed  PubMed Central  Google Scholar 

  110. Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A. & Moskowitz, M. A. Oxygen radicals in cerebral ischemia. Am. J. Physiol. 263, H1356–H1362 (1992).

    CAS  PubMed  Google Scholar 

  111. Hauck, E. F., Apostel, S., Hoffmann, J. F., Heimann, A. & Kempski, O. Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J. Cereb. Blood Flow Metab. 24, 383–391 (2004).

    Article  PubMed  Google Scholar 

  112. Theilen, H., Schröck, H. & Kuschinsky, W. Gross persistence of capillary plasma perfusion after middle cerebral artery occlusion in the rat brain. J. Cereb. Blood Flow Metab. 14, 1055–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Iadecola, C. & Zhang, F. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia. Am. J. Physiol. 266, R546–R552 (1994).

    CAS  PubMed  Google Scholar 

  114. Wagerle, L. C. & Mishra, O. P. Mechanism of CO2 response in cerebral arteries of the newborn pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Circ. Res. 62, 1019–1026 (1988).

    Article  CAS  PubMed  Google Scholar 

  115. Kågström, E., Smith, M. L. & Siesjö, B. K. Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat. Acta Physiol. Scand. 118, 281–291 (1983).

    Article  PubMed  Google Scholar 

  116. Zou, M. H., Leist, M. & Ullrich, V. Selective nitration of prostacyclin synthase and defective vasorelaxation in atherosclerotic bovine coronary arteries. Am. J. Pathol. 154, 1359–1365 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fleming, I. Cytochrome P450 epoxygenases as EDHF synthase(s). Pharmacol. Res. 49, 525–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Sun, J., Druhan, L. J. & Zweier, J. L. Dose dependent effects of reactive oxygen and nitrogen species on the function of neuronal nitric oxide synthase. Arch. Biochem. Biophys. 471, 126–133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kaur, J., Zhao, Z., Klein, G. M., Lo, E. H. & Buchan, A. M. The neurotoxicity of tissue plasminogen activator? J. Cereb. Blood Flow Metab. 24, 945–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Nicole, O. et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Med. 7, 59–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Park, L. et al. Key role of tissue plasminogen activator in neurovascular coupling. Proc. Natl Acad. Sci. USA 105, 1073–1078 (2008). Suggests that tPA, as used clinically to clear clots from blocked vessels, has a role in neurovascular coupling.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Armstead, W. M., Cines, D. B. & Al-Roof Higazi, A. Altered NO function contributes to impairment of uPA and tPA cerebrovasodilation after brain injury. J. Neurotrauma 21, 1204–1211 (2004).

    Article  PubMed  Google Scholar 

  123. Cipolla, M. J., Lessov, N., Clark, W. M. & Haley, E. C. Jr. Postischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator. Stroke 31, 940–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Johnson, N. A. et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234, 851–859 (2005).

    Article  PubMed  Google Scholar 

  125. Ruitenberg, A. et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam study. Ann. Neurol. 57, 789–794 (2005).

    Article  PubMed  Google Scholar 

  126. Park, L. et al. Aβ-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J. Cereb. Blood Flow Metab. 24, 334–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T. & Bacskai, B. J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chow, N. et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc. Natl Acad. Sci. USA 104, 823–828 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. D'Esposito, M., Deouell, L. Y. & Gazzaley, A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Rev. Neurosci. 4, 863–872 (2003).

    Article  CAS  Google Scholar 

  130. Geraldes, P. et al. Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nature Med. 15, 1298–1306 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work we have not cited because of space constraints. We thank the following for useful discussion: K. Caesar, A. Gjedde, C. Hall, A. Mishra, G. Rees and A. Roth. Work in our laboratories is supported by the Fondation Leducq, the European Research Council, the Wellcome Trust, the UK Medical Research Council, the Dunhill Medical Trust, the Biomedical Research Centres of the UK National Institute for Health Research, the European Commission's Sixth Framework Programme, the Human Frontier Science Program, the Danish Medical Research Council, the Lundbeck Foundation, the Nordea Foundation Centre for Healthy Aging, the Novo Nordisk Foundation, the Canadian Institutes of Health Research, the Canada Research Chair in Neuroscience, and the US National Institutes of Health (National Eye Institute).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attwell, D., Buchan, A., Charpak, S. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010). https://doi.org/10.1038/nature09613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09613

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing