Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lateral presynaptic inhibition mediates gain control in an olfactory circuit

Abstract

Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Removing lateral input disinhibits projection neurons.
Figure 2: Lateral inhibition suppresses spontaneous EPSCs and scales with total ORN input.
Figure 3: Lateral GABAergic suppression of ORN–PN synapses.
Figure 4: Genetic evidence that GABA B receptors inhibit ORN–PN synapses at a presynaptic locus.
Figure 5: GABA receptor antagonists mimic removal of lateral input to a projection neuron.

Similar content being viewed by others

References

  1. Laissue, P. P. et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster . J. Comp. Neurol. 405, 543–552 (1999)

    Article  CAS  Google Scholar 

  2. Stocker, R. F., Lienhard, M. C., Borst, A. & Fischbach, K. F. Neuronal architecture of the antennal lobe in Drosophila melanogaster . Cell Tissue Res. 262, 9–34 (1990)

    Article  CAS  Google Scholar 

  3. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005)

    Article  CAS  Google Scholar 

  4. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)

    Article  CAS  Google Scholar 

  5. Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  CAS  Google Scholar 

  6. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003)

    Article  CAS  Google Scholar 

  7. Root, C. M., Semmelhack, J. L., Wong, A. M., Flores, J. & Wang, J. W. Propagation of olfactory information in Drosophila . Proc. Natl Acad. Sci. USA 104, 11826–11831 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Wilson, R. I., Turner, G. C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Wilson, R. I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005)

    Article  CAS  Google Scholar 

  10. Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L. & Wilson, R. I. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nature Neurosci. 10, 1474–1482 (2007)

    Article  CAS  Google Scholar 

  11. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103 (2007)

    Article  CAS  Google Scholar 

  12. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenbock, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007)

    Article  CAS  Google Scholar 

  13. Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997)

    Article  CAS  Google Scholar 

  14. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002)

    Article  CAS  Google Scholar 

  15. McGann, J. P. et al. Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48, 1039–1053 (2005)

    Article  CAS  Google Scholar 

  16. Murphy, G. J., Darcy, D. P. & Isaacson, J. S. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nature Neurosci. 8, 354–364 (2005)

    Article  CAS  Google Scholar 

  17. Vucinic, D., Cohen, L. B. & Kosmidis, E. K. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo . J. Neurophysiol. 95, 1881–1887 (2006)

    Article  Google Scholar 

  18. Nickell, W. T., Behbehani, M. M. & Shipley, M. T. Evidence for GABAB-mediated inhibition of transmission from the olfactory nerve to mitral cells in the rat olfactory bulb. Brain Res. Bull. 35, 119–123 (1994)

    Article  CAS  Google Scholar 

  19. Wachowiak, M. & Cohen, L. B. Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle. J. Neurosci. 19, 8808–8817 (1999)

    Article  CAS  Google Scholar 

  20. Aroniadou-Anderjaska, V., Zhou, F. M., Priest, C. A., Ennis, M. & Shipley, M. T. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABAB heteroreceptors. J. Neurophysiol. 84, 1194–1203 (2000)

    Article  CAS  Google Scholar 

  21. Wachowiak, M. et al. Inhibition of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. J. Neurophysiol. 94, 2700–2712 (2005)

    Article  CAS  Google Scholar 

  22. Distler, P. G. & Boeckh, J. Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana: II. Local multiglomerular interneurons. J. Comp. Neurol. 383, 529–540 (1997)

    Article  CAS  Google Scholar 

  23. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)

    Article  CAS  Google Scholar 

  24. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002)

    Article  CAS  Google Scholar 

  25. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004)

    Article  CAS  Google Scholar 

  26. Ferris, J., Ge, H., Liu, L. & Roman, G. G(o) signaling is required for Drosophila associative learning. Nature Neurosci. 9, 1036–1040 (2006)

    Article  CAS  Google Scholar 

  27. Shibuya, T., Ai, N. & Takagi, S. F. Response types of single cells in the olfactory bulb. Proc. Jpn. Acad. 38, 231–233 (1962)

    Article  Google Scholar 

  28. Macrides, F. & Chorover, S. L. Olfactory bulb units: activity correlated with inhalation cycles and odor quality. Science 175, 84–87 (1972)

    Article  ADS  CAS  Google Scholar 

  29. Mathews, D. F. Response patterns of single units in the olfactory bulb of the rat to odor. Brain Res. 47, 389–400 (1972)

    Article  CAS  Google Scholar 

  30. Tanabe, T., Iino, M. & Takagi, S. F. Discrimination of odors in olfactory bulb, pyriform-amygdaloid areas, and orbitofrontal cortex of the monkey. J. Neurophysiol. 38, 1284–1296 (1975)

    Article  CAS  Google Scholar 

  31. Meredith, M. & Moulton, D. G. Patterned response to odor in single neurones of goldfish olfactory bulb: influence of odor quality and other stimulus parameters. J. Gen. Physiol. 71, 615–643 (1978)

    Article  CAS  Google Scholar 

  32. Chaput, M. & Holley, A. Single unit responses of olfactory bulb neurones to odour presentation in awake rabbits. J. Physiol. (Paris) 76, 551–558 (1980)

    CAS  Google Scholar 

  33. Isaacson, J. S. & Strowbridge, B. W. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20, 749–761 (1998)

    Article  CAS  Google Scholar 

  34. Urban, N. N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J. Physiol. (Lond.) 542, 355–367 (2002)

    Article  CAS  Google Scholar 

  35. Aungst, J. L. et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature 426, 623–629 (2003)

    Article  ADS  CAS  Google Scholar 

  36. Stuart, G. J. & Redman, S. J. The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. J. Physiol. (Lond.) 447, 675–692 (1992)

    Article  CAS  Google Scholar 

  37. Matthews, G., Ayoub, G. S. & Heidelberger, R. Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J. Neurosci. 14, 1079–1090 (1994)

    Article  CAS  Google Scholar 

  38. Fischer, Y. & Parnas, I. Differential activation of two distinct mechanisms for presynaptic inhibition by a single inhibitory axon. J. Neurophysiol. 76, 3807–3816 (1996)

    Article  CAS  Google Scholar 

  39. Fischer, Y. & Parnas, I. Activation of GABAB receptors at individual release boutons of the crayfish opener neuromuscular junction produces presynaptic inhibition. J. Neurophysiol. 75, 1377–1385 (1996)

    Article  CAS  Google Scholar 

  40. Bean, B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340, 153–156 (1989)

    Article  ADS  CAS  Google Scholar 

  41. Foldy, C., Neu, A., Jones, M. V. & Soltesz, I. Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J. Neurosci. 26, 1465–1469 (2006)

    Article  CAS  Google Scholar 

  42. Schlief, M. L. & Wilson, R. I. Olfactory processing and behavior downstream from highly selective receptor neurons. Nature Neurosci. 10, 623–630 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ito, L. Luo, G. Roman, D. P. Smith, L. M. Stevens and L. B. Vosshall for gifts of fly stocks. We thank G. Laurent, A. W. Liu and members of the Wilson laboratory for conversations. This work was funded by a grant from the NIDCD, the Pew, McKnight, Sloan, and Beckman Foundations (to R.I.W.). S.R.O. was partially supported by a NSF fellowship.

Author Contributions S.R.O. performed the experiments and analysed the data. S.R.O. and R.I.W. designed the experiments and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel I. Wilson.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8 with Legends. (PDF 11844 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, S., Wilson, R. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008). https://doi.org/10.1038/nature06864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06864

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing