Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila

Abstract

Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genome-wide transgenic RNAi library.
Figure 2: Efficient and specific gene interference with ubiquitous RNAi.
Figure 3: Tissue-specific RNAi and the enhancing effect of Dicer-2.
Figure 4: RNAi in neurons and muscles.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    ADS  CAS  PubMed  Google Scholar 

  2. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gönczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000)

    Article  ADS  PubMed  Google Scholar 

  7. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Sönnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005)

    Article  ADS  PubMed  Google Scholar 

  9. Reddien, P. W., Bermange, A. L., Murfitt, K. J., Jennings, J. R. & Sanchez Alvarado, A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8, 635–649 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newmark, P. A., Reddien, P. W., Cebria, F. & Sanchez Alvarado, A. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc. Natl Acad. Sci. USA 100 (Suppl 1). 11861–11865 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Roessel, P., Hayward, N. M., Barros, C. S. & Brand, A. H. Two-color GFP imaging demonstrates cell-autonomy of GAL4-driven RNA interference in Drosophila. Genesis 34, 170–173 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Roignant, J. Y. et al. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fortier, E. & Belote, J. M. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240–244 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000)

    Article  CAS  Google Scholar 

  15. Lam, G. & Thummel, C. S. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957–963 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Martinek, S. & Young, M. W. Specific genetic interference with behavioral rhythms in Drosophila by expression of inverted repeats. Genetics 156, 1717–1725 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  18. Schuler, G. D. Sequence mapping by electronic PCR. Genome Res. 7, 541–550 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ryder, E. et al. The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167, 797–813 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kulkarni, M. M. et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nature Methods 3, 833–838 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Ma, Y., Creanga, A., Lum, L. & Beachy, P. A. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1–15 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Williams, R. W. & Rubin, G. M. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl Acad. Sci. USA 99, 6889–6894 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Caudy, A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994)

    Article  CAS  PubMed  Google Scholar 

  31. Ranganayakulu, G., Schulz, R. A. & Olson, E. N. Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol. 176, 143–148 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Roman, G., Endo, K., Zong, L. & Davis, R. L. P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 12602–12607 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stebbins, M. J. et al. Tetracycline-inducible systems for Drosophila. Proc. Natl Acad. Sci. USA 98, 10775–10780 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kalidas, S. & Smith, D. P. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177–184 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Lee, Y. S. & Carthew, R. W. Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30, 322–329 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Reichhart, J. M. et al. Splice-activated UAS hairpin vector gives complete RNAi knockout of single or double target transcripts in Drosophila melanogaster. Genesis 34, 160–164 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000)

    CAS  PubMed  Google Scholar 

  40. Beall, E. L., Mahoney, M. B. & Rio, D. C. Identification and analysis of a hyperactive mutant form of Drosophila P-element transposase. Genetics 162, 217–227 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tomancak, P. et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome. Biol. 3 doi: 10.1186/gb-2002-3-12-research0088 (2002)

  42. Arbeitman, M. N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Schuler, G. D. Sequence mapping by electronic PCR. Genome Res. 7, 541–550 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wong, M. L. & Medrano, J. F. Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Bicker, J. Buch, M. Garstkiewicz, A. Gruber, D. Hofmann Rodrigues, K. Jäger, S. Krüttner, J. Mayerhofer, D. Muggenhumer, E. Muhr, K. Schernhuber, J. Schluder, A. Schmatz, C. Sturtzel, M. Vinzenz and W. Wolfgang for technical assistance, R. Lehmann for the original hs-hid lines, J. Mummery-Widmer, M. Yamazaki and J. Knoblich for suggesting the use of pnr-GAL4, R. Carthew for initial discussions on the effectiveness of UAS-IR transgenes, and B. Thompson and V. Siegel for helpful comments on the manuscript. F.S. was supported by a long-term postdoctoral fellowship from the Human Frontier Science Program. This work was supported by funds from the Austrian Academy of Sciences (IMBA) and Boehringer Ingelheim GmbH (IMP), and grants from the Austrian Science Fund and the European Union Framework Programme

Author Contributions G.D. established the methodology, and participated in and led the team that constructed the library. K.K. led this team during the finishing stages. D.C. and G.D. performed the bioinformatic analyses, G.D., F.S. and M.F. compiled all the data, which were analysed by G.D., B.J.D. and F.S. K.S. established the enhancing effect of UAS-Dcr-2. B.J.D. conceived and coordinated the project, and wrote the manuscript with input from G.D. and F.S. The remaining authors made major technical contributions to the construction of the library.

The transgenic RNAi library, including detailed information on each line, is available from the VDRC at 〈http://www.vdrc.at〉.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Dickson.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

This file contains Supplementary Table 1 with molecular details of all UAS-IR constructs, including predictions of ON- and OFF-target genes, CAN repeats, and specificity score (s19). Specific details of potential OFF-target genes, including the number of possible 19-mer matches for each UAS-IR construct and each OFF-target gene, are available at http://www.vdrc.at. (XLS 10350 kb)

Supplementary Table 2

This file contains Supplementary Table 2 with all established transgenic RNAi stocks, indicating the linkage of the UAS-IR transgene and its viability and fertility in homozygotes. All lines are in an isogenic w1118 background and have been verified to contain the indicated transgene by genomic PCR. (XLS 1430 kb)

Supplementary Table 3

This file contains Supplementary Table 3 with relative knock-down of target gene mRNA levels. Data are mean ± s.e.m (n = 2). (PDF 18 kb)

Supplementary Table 4

This file contains Supplementary Table 4 with phenotypic scores (0 – 10) for each defect class, for each of the two assays performed with each line crossed to actin5C-GAL4. (XLS 3351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietzl, G., Chen, D., Schnorrer, F. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007). https://doi.org/10.1038/nature05954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05954

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing