Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy for retinal ganglion cell neuroprotection in glaucoma

Abstract

Glaucoma is the leading cause of irreversible blindness worldwide. The primary cause of glaucoma is not known, but several risk factors have been identified, including elevated intraocular pressure and age. Loss of vision in glaucoma is caused by the death of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. Therapeutic strategies aimed at delaying or halting RGC loss, known as neuroprotection, would be valuable to save vision in glaucoma. In this review, we discuss the significant progress that has been made in the use of gene therapy to understand mechanisms underlying RGC degeneration and to promote the survival of these neurons in experimental models of optic nerve injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Quigley HA, Broman AT . The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiggs JL, Allingham RR, Vollrath D, Jones KH, De La Paz M, Kern J et al. Prevalence of mutations in TIGR/myocilin in patients with adult and juvenile primary open-angle glaucoma. Am J Hum Genet 1998; 63: 1549–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shimizu S, Lichter PR, Johnson AT, Zhou Z, Higashi M, Gottfredsdottir M et al. Age-dependent prevalence of mutations at the GLC1A locus in primary open-angle glaucoma. Am J Ophthalmol 2000; 130: 165–177.

    Article  CAS  PubMed  Google Scholar 

  4. Campos Mollo E, Lpez-Garrido M-P, Blanco Marchite C, Garcia-Feijoo J, Peralta J, Belmonte-Martnez J et al. CYP1B1 mutations in Spanish patients with primary congenital glaucoma: phenotypic and functional variability. Mol Vis 2009; 15: 417–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan BJ, Wiggs JL . Glaucoma: genes, phenotypes, and new directions for therapy. J Clin Invest 2010; 120: 3064–3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Rasmussen CA, Gabelt BT, Brandt CR, Kaufman PL . Gene therapy targeting glaucoma: where are we? Surv Ophthalmol 2009; 54: 472–486.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheng L, Sapieha P, Kittlerová P, Hauswirth WW, Di Polo A . TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 2002; 22: 3977–3986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harvey AR, Kamphuis W, Eggers R, Symons NA, Blits B, Niclou S et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci 2002; 21: 141–157.

    Article  CAS  PubMed  Google Scholar 

  9. Ali RR, Reichel MB, De Alwis M, Kanuga N, Kinnon C, Levinsky RJ et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther 1998; 9: 81–86.

    Article  CAS  PubMed  Google Scholar 

  10. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina by an adeno-associated virus vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  PubMed  Google Scholar 

  11. Bennett J, Maguire AM, Cideciyan AV, Schnell M, Glover E, Anand V et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999; 96: 9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hellstrom M, Ruitenberg MJ, Pollett MA, Ehlert EME, Twisk J, Verhaagen J et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Therapy 2009; 16: 521–532.

    Article  CAS  PubMed  Google Scholar 

  13. Martin KR, Klein RL, Quigley HA . Gene delivery to the eye using adeno-associated viral vectors. Methods 2002; 28: 267–275.

    Article  CAS  PubMed  Google Scholar 

  14. Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F . In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61: 527–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stieger K, Schroeder J, Provost N, Mendes-Madeira A, Belbellaa B, Meur GL et al. Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther 2008; 17: 516–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotech 2005; 23: 1435–1439.

    Article  CAS  Google Scholar 

  17. Reichel MB, Ali RR, Thrasher AJ, Hunt DM, Bhattacharya SS, Baker D . Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Therapy 1998; 5: 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar-Singh R . Barriers for retinal gene therapy: separating fact from fiction. Vis Res 2008; 48: 1671–1680.

    Article  CAS  PubMed  Google Scholar 

  19. Oshima Y, Oshima S, Nambu H, Kachi S, Hackett S, Melia M et al. Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. J Cell Physiol 2004; 201: 393–400.

    Article  CAS  PubMed  Google Scholar 

  20. Oshima Y, Takahashi K, Oshima S, Saishin Y, Saishin Y, Silva RL et al. Intraocular gutless adenoviral-vectored VEGF stimulates anterior segment but not retinal neovascularization. J Cell Physiol 2004; 199: 399–411.

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi K, Saishin Y, Saishin Y, Silva R, Oshima Y, Oshima S et al. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J 2003; 17: 896–898.

    Article  CAS  PubMed  Google Scholar 

  22. Lamartina S, Cimino M, Roscilli G, Dammassa E, Lazzaro D, Rota R et al. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 2007; 9: 862–874.

    Article  CAS  PubMed  Google Scholar 

  23. Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ . Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci USA 1998; 95: 3978–3983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Isenmann S, Klöcker N, Gravel C, Bähr M . Protection of axotomized retinal ganglion cells by adenovirally delivered BDNF in vivo. Eur J Neurosci 1998; 10: 2751–2756.

    Article  CAS  PubMed  Google Scholar 

  25. Bennett J, Wilson J, Sun D, Forbes B, Maguire A . Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci 1994; 35: 2535–2542.

    CAS  PubMed  Google Scholar 

  26. Li T, Adamian M, Roof DJ, Berson EL, Dryja TP, Roessler BJ et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest Ophthalmol Vis Sci 1994; 35: 2543–2549.

    CAS  PubMed  Google Scholar 

  27. Cashman S, McCullough L, Kumar Singh R . Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base. Mol Ther 2007; 15: 1640–1646.

    CAS  PubMed  Google Scholar 

  28. Kugler S, Straten G, Kreppel F, Isenmann S, Liston P, Bahr M . The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ 2000; 7: 815–824.

    Article  CAS  PubMed  Google Scholar 

  29. Balaggan KS, Ali RR . Ocular gene delivery using lentiviral vectors. Gene Therapy 2011; (in press).

  30. Cheng L, Chaidhawangul S, Wong-Staal F, Gilbert J, Poeschla E, Toyoguchi M et al. Human immunodeficiency virus type 2 (HIV-2) vector-mediated in vivo gene transfer into adult rabbit retina. Curr Eye Res 2002; 24: 196–201.

    Article  PubMed  Google Scholar 

  31. Isenmann S, Gillardon F, Bähr M . Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression. Cell Death Differ 1999; 6: 673–682.

    Article  CAS  PubMed  Google Scholar 

  32. Thaler S, Dietrich K, Ladewig T, Okuno E, Kocki T, Turski WA et al. A selective method for transfection of retinal ganglion cells by retrograde transfer of antisense oligonucleotides against kynurenine aminotransferase II. Mol Vis 2006; 12: 100–107.

    CAS  PubMed  Google Scholar 

  33. Caprioli J, Munemasa Y, Kwong JM, Piri N . Overexpression of thioredoxins 1 and 2 increases retinal ganglion cell survival after pharmacologically induced oxidative stress, optic nerve transection, and in experimental glaucoma. Trans Am Ophthalmol Soc 2009; 107: 161–165.

    PubMed  PubMed Central  Google Scholar 

  34. Ishikawa H, Takano M, Matsumoto N, Sawada H, Ide C, Mimura O et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Therapy 2004; 12: 289–298.

    Article  CAS  Google Scholar 

  35. Mo X, Oshitari T, Negishi H, Dezawa M, Mizota A, Adachi-Usami E . Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats. Invest Ophthalmol Vis Sci 2002; 43: 2401–2405.

    PubMed  Google Scholar 

  36. Koeberle PD, Wang Y, Schlichter LC . Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo. Cell Death Differ 2009; 17: 134–144.

    Article  CAS  Google Scholar 

  37. Lingor P, Koeberle P, Kugler S, Bahr M . Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005; 128: 550–558.

    Article  PubMed  Google Scholar 

  38. Thoenen H, Bandtlow C, Heumann R . The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 1987; 109: 145–178.

    Article  CAS  PubMed  Google Scholar 

  39. Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ . Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Nat Acad Sci USA 2010; 107: 5196–5201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ . Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 2000; 41: 764–774.

    CAS  PubMed  Google Scholar 

  41. Carpenter P, Sefton AJ, Dreher B, Lim W-L . Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus. J Comp Neurol 1986; 251: 240–259.

    Article  CAS  PubMed  Google Scholar 

  42. Pearson HE, Stoffler DJ . Retinal ganglion cell degeneration following loss of postsynaptic target neurons in the dorsal lateral geniculate nucleus of the adult cat. Exp Neurol 1992; 116: 163–171.

    Article  CAS  PubMed  Google Scholar 

  43. Pearson HE, Thompson TP . Atrophy and degeneration of ganglion cells in central retina following loss of postsynaptic target neurons in the dorsal lateral geniculate nucleus of the adult cat. Exp Neurol 1993; 119: 113–119.

    Article  CAS  PubMed  Google Scholar 

  44. Straten G, Schmeer C, Kretz A, Gerhardt E, Kugler S, Schulz JB et al. Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis. Neurobiol Dis 2002; 11: 123–133.

    Article  CAS  PubMed  Google Scholar 

  45. van Adel BA, Arnold JM, Phipps J, Doering LC, Ball AK . Ciliary neurotrophic factor protects retinal ganglion cells from axotomy-induced apoptosis via modulation of retinal glia in vivo. J Neurobiol 2005; 63: 215–234.

    Article  CAS  PubMed  Google Scholar 

  46. Chen H, Weber AJ . BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci 2001; 42: 966–974.

    CAS  PubMed  Google Scholar 

  47. Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bähr M . Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 2000; 20: 6962–6967.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Therapy 2006; 13: 1328–1341.

    Article  CAS  PubMed  Google Scholar 

  49. Mansour-Robaey S, Clarke DB, Wang Y-C, Bray GM, Aguayo AJ . Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 1994; 91: 1632–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mey J, Thanos S . Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 1993; 602: 304–317.

    Article  CAS  PubMed  Google Scholar 

  51. Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M . Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996; 37: 489–500.

    CAS  PubMed  Google Scholar 

  52. Hellström M, Harvey AR . Retinal ganglion cell gene therapy and visual system repair. Curr Gene Ther 2011; 11: 116–131.

    Article  PubMed  Google Scholar 

  53. Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF . Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett 2001; 305: 139–142.

    Article  CAS  PubMed  Google Scholar 

  54. Martin KR, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44: 4357–4365.

    Article  PubMed  Google Scholar 

  55. Fournier AE, McKerracher L . Expression of specific tubulin isotypes increases during regeneration of injured CNS neurons, but not after the application of brain-derived neurotrophic factor (BDNF). J Neurosci 1997; 17: 4623–4632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harvey AR, Hellström M, Rodger J . Gene therapy and transplantation in the retinofugal pathway. In: Verhaagen J, Hol E, Huitinga I, Wijnholds J, Bergen AA, Boer GJ, Swabb DF (eds). Progress in Brain Research, vol. 175. Elsevier: Amsterdam, 2009, pp 151–161.

    Google Scholar 

  57. Pernet V, Di Polo A . Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain 2006; 129: 1014–1026.

    Article  PubMed  Google Scholar 

  58. Fischer D, Heiduschka P, Thanos S . Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol 2001; 172: 257–272.

    Article  CAS  PubMed  Google Scholar 

  59. Leon SY, Nguyen J, Irwin N, Benowitz LI . Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 2000; 20: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 2006; 9: 843–852.

    Article  CAS  PubMed  Google Scholar 

  61. Clarke DB, Bray GM, Aguayo AJ . Prolonged administration of NT-4/5 fails to rescue most axotomized retinal ganglion cells in adult rats. Vis Res 1998; 38: 1517–1524.

    Article  CAS  PubMed  Google Scholar 

  62. Meyer-Franke A, Wilkinson GA, Kruttgen A, Hu M, Munro E, Hanson Jr MG et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 1998; 21: 681–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cui Q, Yip HK, Zhao RC, So KF, Harvey AR . Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 2003; 22: 49–61.

    Article  CAS  PubMed  Google Scholar 

  64. Muller A, Hauk TG, Fischer D . Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 2007; 130: 3308–3320.

    Article  PubMed  Google Scholar 

  65. Ji JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J et al. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 2004; 19: 265–272.

    Article  PubMed  Google Scholar 

  66. Pease ME, Berlinicke C, Bloom K, Cone F, Wang Y, Klein RL et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 2009; 50: 2194–2200.

    Article  PubMed  Google Scholar 

  67. Maier K, Rau CR, Storch MK, Sattler MB, Demmer I, Weissert R et al. Ciliary neurotrophic factor protects retinal ganglion cells from secondary cell death during acute autoimmune optic neuritis in rats. Brain Pathol 2004; 14: 378–387.

    Article  CAS  PubMed  Google Scholar 

  68. van Adel BA, Kostic C, Déglon N, Ball AK, Arsenijevic Y . Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther 2003; 14: 103–115.

    Article  CAS  PubMed  Google Scholar 

  69. Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, LaVail MM et al. Injury-induced upregulation of bFGF and CNTF mRNAS in the rat retina. J Neurosci 1995; 15: 7377–7385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sapieha M, Peltier M, Rendahl KG, Manning WC, Di Polo A . Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 2003; 24: 656–672.

    Article  CAS  PubMed  Google Scholar 

  71. Sapieha M, Hauswirth WW, Di Polo A . Extracellular signal-regulated kinases 1/2 are required for adult retinal ganglion cell axon regeneration induced by fibroblast growth factor-2. J Neurosci Res 2006; 83: 985–995.

    Article  CAS  PubMed  Google Scholar 

  72. Klocker N, Braunling F, Isenmann S, Bahr M . In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 1997; 10: 3439–3442.

    Article  Google Scholar 

  73. Koeberle PD, Ball AK . Neurturin enhances the survival of axotomized retinal ganglion cells in vivo: combined effects with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Neurosci 2002; 110: 555–567.

    Article  CAS  Google Scholar 

  74. Ishikawa H, Takano M, Matsumoto N, Sawada H, Ide C, Mimura O et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Therapy 2005; 12: 289–298.

    Article  CAS  PubMed  Google Scholar 

  75. Berkelaar M, Clarke DB, Wang Y-C, Bray GM, Aguayo AJ . Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 1994; 14: 4368–4374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ . Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774–786.

    CAS  PubMed  Google Scholar 

  77. Kerrigan LA, Quigley HA, Smith SD, Pease ME . TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 1997; 115: 1031–1035.

    Article  CAS  PubMed  Google Scholar 

  78. Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. P Natl Acad Sci USA 2004; 101: 13352–13356.

    Article  CAS  Google Scholar 

  79. Tezel G, Carlo Nucci LC, Giacinto B . TNF-α signaling in glaucomatous neurodegeneration. In: Nucci C, Cerulli L, Osborne NN, Bagetta G (eds). Progress in Brain Research, vol. 173. Elsevier: Amsterdam, 2008, pp 409–421.

    Google Scholar 

  80. Kaplan D, Miller FD . Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 2000; 10: 381–391.

    Article  CAS  PubMed  Google Scholar 

  81. Peterson WM, Wang Q, Tzekova R, Wiegand SJ . Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J Neurosci 2000; 20: 4081–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pernet V, Hauswirth WW, Di Polo A . Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. J Neurochem 2005; 93: 72–83.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou Y, Pernet V, Hauswirth WW, Di Polo A . Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma. Mol Ther 2005; 12: 402–412.

    Article  CAS  PubMed  Google Scholar 

  84. Bessero AC, Chiodini F, Rungger-Brändle E, Bonny C, Clarke PG . Role of the c-Jun N-terminal kinase pathway in retinal excitotoxicity, and neuroprotection by its inhibition. J Neurochem 2010; 113: 1307–1318.

    CAS  PubMed  Google Scholar 

  85. Hashimoto K, Parker A, Malone P, Gabelt BT, Rasmussen C, Kaufman PS et al. Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro. Brain Res 2005; 1054: 103–115.

    Article  CAS  PubMed  Google Scholar 

  86. Levkovitch-Verbin H, Quigley HA, Martin KR, Harizman N, Valenta DF, Pease ME et al. The transcription factor c-jun is activated in retinal ganglion cells in experimental rat glaucoma. Exp Eye Res 2005; 80: 663–670.

    Article  CAS  PubMed  Google Scholar 

  87. Nickells RW, Semaan SJ, Schlamp CL, Carlo Nucci LCNNO, Giacinto B . Involvement of the Bcl2 gene family in the signaling and control of retinal ganglion cell death. In: Nucci C, Cerulli L, Osborne NN, Bagetta G (eds). Progress in Brain Research, vol. 173. Elsevier: Amsterdam, 2008, pp 423–435.

    Google Scholar 

  88. Bonfanti L, Strettoi E, Chierzi S, Cenni MC, Liu X-H, Martinou J-C et al. Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. J Neurosci 1996; 16: 4186–4194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Malik JMI, Shevtsova Z, Bahr M, Kugler S . Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol Ther 2005; 11: 373–381.

    Article  CAS  PubMed  Google Scholar 

  90. Planchamp V, Bermel C, Tönges L, Ostendorf T, Kügler S, Reed JC et al. BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain 2008; 131: 2606–2619.

    Article  PubMed  Google Scholar 

  91. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 2005; 1: e4.

    Article  CAS  PubMed Central  Google Scholar 

  92. Lingor P, Koeberle P, Kugler S, Bahr M . Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005; 128: 550–558.

    Article  PubMed  Google Scholar 

  93. Bilsland J . Caspases and neuroprotection. Curr Opin Investig Drugs 2002; 3: 1745–1752.

    CAS  PubMed  Google Scholar 

  94. Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N et al. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis 2011; 2: e173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Deveraux QL, Takahashi R, Salvesen GS, Reed JC . X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304.

    Article  CAS  PubMed  Google Scholar 

  96. McKinnon SJ, Lehman DM, Tahzib NG, Ransom NL, Reitsamer HA, Liston P et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther 2002; 5: 780–787.

    Article  CAS  PubMed  Google Scholar 

  97. Renwick J, Narang MA, Coupland SG, Xuan JY, Baker AN, Brousseau J et al. XIAP-mediated neuroprotection in retinal ischemia. Gene Therapy 2005; 13: 339–347.

    Article  CAS  Google Scholar 

  98. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126: 163–175.

    Article  CAS  PubMed  Google Scholar 

  99. Ju WK, Duong-Polk KX, Lindsey JD, Ellisman MH, Weinreb RN . Increased optic atrophy type 1 expression protects retinal ganglion cells in a mouse model of glaucoma. Mol Vis 2010; 16: 1331–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 2008; 83: 373–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lam BL, Feuer WJ, Abukhalil F, Porciatti V, Hauswirth WW, Guy J . Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch Ophthalmol 2010; 128: 1129–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Osborne NN . Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol 2008; 87: 450–454.

    Article  Google Scholar 

  103. Lebrun-Julien F, Duplan L, Pernet V, Osswald IK, Sapieha P, Bourgeois P et al. Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 2009; 29: 5536–5545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee JK, Lu S, Madhukar A . Real-time dynamics of calcium, caspase-3/7, and morphological changes in retinal ganglion cell apoptosis under elevated pressure. PLoS ONE 2010; 5: e13437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanamori A, Catrinescu MM, Kanamori N, Mears KA, Beaubien R, Levin LA . Superoxide is an associated signal for apoptosis in axonal injury. Brain 2010; 133: 2612–2625.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Peng PH, Ko ML, Chen CF, Juan SH . Haem oxygenase-1 gene transfer protects retinal ganglion cells from ischaemia/reperfusion injury. Clin Sci 2008; 115: 335–342.

    Article  CAS  Google Scholar 

  107. Hegazy KA, Sharma SC . Functional human heme oxygenase has a neuroprotective effect on adult rat ganglion cells after pressure-induced ischemia. Neuroreport 2000; 11: 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  108. Aguayo AJ, Bray GM, Carter DA, Villegas-Perez MP, Vidal-Sanz M, Rasminsky M . Regrowth and connectivity of injured central nervous system axons in adult rodents. Acta Neurobiol Exp 1990; 50: 381–389.

    CAS  Google Scholar 

  109. Sandvig A, Berry M, Barrett LB, Butt A, Logan A . Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46: 225–251.

    Article  PubMed  Google Scholar 

  110. Lebrun-Julien F, Morquette B, Douillette A, Saragovi HU, Di Polo A . Inhibition of p75NTR in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol Cell Neurosci 2009; 40: 410–420.

    Article  CAS  PubMed  Google Scholar 

  111. Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 2005; 45: 353–359.

    Article  CAS  PubMed  Google Scholar 

  112. Fischer D, He Z, Benowitz LI . Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci 2004; 24: 1646–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson EC, Morrison JC . Friend or foe? Resolving the impact of glial responses in glaucoma. J Glaucoma 2009; 18: 341–353.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fischer D, Petkova V, Thanos S, Benowitz LI . Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with rhoA inactivation. J Neurosci 2004; 24: 8726–8740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 1999; 19: 7537–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lorber B, Howe ML, Benowitz LI, Irwin N . Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci 2009; 12: 1407–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Park KL, Hu Y, Smith PD, Wang C, Cai B, Xu B et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008; 322: 963–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kurimoto T, Yin Y, Omura K, Gilbert H-y, Kim D, Cen L-P et al. Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 2010; 30: 15654–15663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Timothy Kennedy (McGill University) for helpful comments on the manuscript, Dr Elena Feinstein (Quark Pharmaceuticals Inc., Ness Ziona, Israel) for providing the reporter siRNA and James Correia for assistance with the figures. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research. ADP is a Fonds de recherche en santé du Québec Chercheur Senior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Di Polo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A., Di Polo, A. Gene therapy for retinal ganglion cell neuroprotection in glaucoma. Gene Ther 19, 127–136 (2012). https://doi.org/10.1038/gt.2011.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.142

Keywords

This article is cited by

Search

Quick links