Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Learning to see: experience and attention in primary visual cortex

Abstract

The response properties of neurons in primary sensory cortices remain malleable throughout life. The existence of such plasticity, and the characteristics of a form of implicit learning known as perceptual learning, suggest that changes in primary sensory cortex may mediate learning. We explored whether modification of the functional properties of primary visual cortex (V1) accompanies perceptual learning. Basic receptive field properties, such as location, size and orientation selectivity, were unaffected by perceptual training, and visual topography (as measured by magnification factor) was indistinguishable between trained and untrained animals. On the other hand, the influence of contextual stimuli placed outside the receptive field showed a change consistent with the trained discrimination. Furthermore, this property showed task dependence, only being manifest when the animal was performing the trained discrimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monkeys improved with training on bisection task.
Figure 2: Representation of visual space did not change as a result of bisection training.
Figure 3: RF size and orientation tuning bandwidth did not change following bisection training.
Figure 4: Contextual interactions changed when the monkey performed the bisection task.
Figure 5: Modulation depended on the task that the monkey performed in trained but not untrained hemisphere.
Figure 6: Changes in contextual interactions are not observed for untrained stimulus patterns or in the untrained hemisphere.
Figure 7: Measurement of receptive field profiles during fixation and bisection trials in trained and untrained hemisphere.

Similar content being viewed by others

References

  1. Gilbert, C. Adult cortical dynamics. Physiol. Rev. 78, 467–485 (1998).

    Article  CAS  Google Scholar 

  2. Weinberger, N. M. et al. Retuning auditory cortex by learning: a preliminary model of receptive field plasticity. Concepts in Neuroscience 1, 91–132 (1990).

    Google Scholar 

  3. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  Google Scholar 

  4. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  5. Hubel, D. H. & Wiesel, T. N. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977).

    Article  CAS  Google Scholar 

  6. Gilbert, C. D. Early perceptual learning. Proc. Natl. Acad. Sci. USA 91, 1195–1197 (1994).

    Article  CAS  Google Scholar 

  7. McKee, S. P. & Westheimer, G. Improvement in vernier acuity with practice. Percept. Psychophys. 24, 258–262 (1978).

    Article  CAS  Google Scholar 

  8. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1021 (1992).

    Article  CAS  Google Scholar 

  9. Fahle, M. & Edelman, S. Long-term learning in vernier acuity: effects of stimulus orientation, range and of feedback. Vision Res. 33, 397–412 (1993).

    Article  CAS  Google Scholar 

  10. Kapadia, M. K., Gilbert, C. D. & Westheimer, G. A. Quantitative measure for short-term cortical plasticity in human vision. J. Neurosci. 14, 451–457 (1994).

    Article  CAS  Google Scholar 

  11. Levi, D. & Polat, U. Neural plasticity in adults with amblyopia. Proc. Natl. Acad. Sci. USA 93, 6830–6834 (1996).

    Article  CAS  Google Scholar 

  12. Crist, R. E., Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Perceptual learning of spatial localization: specificity for orientation, position and context. J. Neurophysiol. 78, 2889–2894 (1997).

    Article  CAS  Google Scholar 

  13. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  14. Wolbarsht, M. L., MacNichol, E. F. Jr. & Wagner, H. G. Glass insulated platinum microelectrode. J. Physiol. (Lond.) 132, 1309–1310 (1960).

    CAS  Google Scholar 

  15. Von der Heydt, R. & Peterhans, E. Mechanism of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. J. Neurosci. 9, 1731–1748 (1989).

    Article  CAS  Google Scholar 

  16. Snodderly, D. M. & Gur, M. Organization of striate cortex of alert, trained monkeys (Macaque Fascicularis): ongoing activity, stimulus selectivity and widths of receptive field activating regions. J. Neurophysiol. 71, 2100–2125 (1995).

    Article  Google Scholar 

  17. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies and individual variability. Vision Res. 24, 429–448 (1984).

    Article  CAS  Google Scholar 

  18. Dow, B. W., Synder, A. Z., Vautin, R. G. & Bauer, R. Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp. Brain. Res. 44, 213–228 (1981).

    Article  CAS  Google Scholar 

  19. Knierim, J. J. & Van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  Google Scholar 

  20. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  21. Kapadia, M. K., Westheimer, G. & Gilbert, C. D. The spatial distribution of excitatory and inhibitory context interactions in primate visual cortex. J. Neurophysiol. 84, 2048–2062 (2000).

    Article  CAS  Google Scholar 

  22. Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc. Natl. Acad. Sci. USA 96, 12073–12078 (1999).

    Article  CAS  Google Scholar 

  23. Ito, M. & Gilbert, C. D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  Google Scholar 

  24. Vogels, R. & Orban, G. A. Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. J. Neurophysiol. 71, 1428–1451 (1994).

    Article  CAS  Google Scholar 

  25. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  26. Dill, M. & Fahle, M. Limited translation invariance of human visual pattern recognition. Percept. Psychophys. 60, 65–81 (1998).

    Article  CAS  Google Scholar 

  27. Gilbert, C. D., Hirsh, J. A. & Wiesel, T. N. Lateral interactions in visual cortex. Cold Spring Harb. Symp. Quant. Biol. 55, 663–677 (1990).

    Article  CAS  Google Scholar 

  28. Kaas, J. H. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    Article  CAS  Google Scholar 

  29. Heinen, S. J. & Skavenski, A. A. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp. Brain Res. 83, 670–674 (1991).

    Article  CAS  Google Scholar 

  30. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  31. Ts'o, D. Y. & Gilbert, C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727 (1988).

    Article  CAS  Google Scholar 

  32. Gilbert, C. D. & Wiesel, T. N. Columnar specificity of intrinsic horizontal connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  33. Das, A. & Gilbert, C. D. Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections. J. Neurophysiol. 74, 779–792 (1995).

    Article  CAS  Google Scholar 

  34. McGuire, B. A., Gilbert, C. D., Rivlin, P. K. & Wiesel, T. N. Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol. 305, 370–392 (1991).

    Article  CAS  Google Scholar 

  35. Hirsch, J. A. & Gilbert, C. D. Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 11, 1800–1809 (1991).

    Article  CAS  Google Scholar 

  36. Weliky, M., Kandler, K., Fitzpatrick, D. & Katz, L. C. Patterns of excitation and inhibition evoked by horizontal connections in cortex share a common relationship to orientation columns. Neuron 15, 541–552 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants EY07968 (C.D.G.) and GM07524 (R.E.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Gilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crist, R., Li, W. & Gilbert, C. Learning to see: experience and attention in primary visual cortex. Nat Neurosci 4, 519–525 (2001). https://doi.org/10.1038/87470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing