Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neural code for low-frequency sound localization in mammals

Abstract

We report a systematic relationship between sound-frequency tuning and sensitivity to interaural time delays for neurons in the midbrain nucleus of the inferior colliculus; neurons with relatively low best frequencies (BFs) showed response peaks at long delays, whereas neurons with relatively high BFs showed response peaks at short delays. The consequence of this relationship is that the steepest region of the function relating discharge rate to interaural time delay (ITD) fell close to midline for all neurons irrespective of BF. These data provide support for a processing of the output of coincidence detectors subserving low-frequency sound localization in which the location of a sound source is determined by the activity in two broad, hemispheric spatial channels, rather than numerous channels tuned to discrete spatial positions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of many ITD-sensitive neurons are maximally modulated over the physiological range of ITDs.
Figure 2: Peak ITD, but not peak IPD, depends on neuronal BF.
Figure 3: The rate at which discharge rate changes as a function of ITD is largely independent of neuronal BF.

Similar content being viewed by others

References

  1. Rayleigh, Lord On our perception of sound direction. Philos. Mag . 13, 214–232 (1907).

    Article  Google Scholar 

  2. Stevens, S. S. & Newman, E. B. The localization of actual sources of sound. Am. J. Psychol . 48, 297–306 (1936).

    Article  Google Scholar 

  3. Jeffress, L. A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    Article  CAS  Google Scholar 

  4. Wightman, F. L. & Kistler, D. J. The dominant role of low-frequency interaural time differences in sound localisation. J. Acoust Soc. Am. 85, 868–878 (1992).

    Article  Google Scholar 

  5. Yin, T. C. T. & Kuwada, S. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J. Neurophysiol. 50, 1020–1042 (1983).

    Article  CAS  Google Scholar 

  6. Kuwada, S., Stanford, T. R. & Batra, R. Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. J. Neurophysiol. 57, 1338–1360 (1987).

    Article  CAS  Google Scholar 

  7. Palmer, A. R., Rees, A. & Caird, D. in Processing of Complex Sounds by the Auditory System (eds. Carlyon, R. P., Darwin, C. J. & Russell, I. J.) 415–422 (Clarendon, Oxford, 1992).

    Google Scholar 

  8. Spitzer, M. W. & Semple, M. N. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80, 3062–3076 (1998).

    Article  CAS  Google Scholar 

  9. Takahashi, T. & Konishi, M. Selectivity for interaural time difference in the owl's midbrain. J. Neurosci. 6, 3413–3422 (1986).

    Article  CAS  Google Scholar 

  10. Stern, R. M. & Trahiotis, C. in Binaural and Spatial Hearing in Real and Virtual Environments (eds. Gilkey, R. H. & Anderson, T. R.) 499–531 (Erlbaum, Mahwah, New Jersey, 1996).

    Google Scholar 

  11. Coles, R. B. & Guppy, A. Directional hearing in the barn owl (Tyto alba). J. Comp. Physiol. A 163, 117–133 (1988).

    Article  CAS  Google Scholar 

  12. Wagner, H., Takahashi, T. T. & Konishi, M. Representation of interaural time differences in the central nucleus of the barn-owl's inferior colliculus. J. Neurosci. 7, 3105–3116 (1987).

    Article  CAS  Google Scholar 

  13. Zwislocki, J. & Feldman, R. S. Just noticeable differences in dichotic phase. J. Acoust. Soc. Am. 28, 866–864 (1956)

    Google Scholar 

  14. Middlebrooks, J. C. & Green, D. M. Sound localisation by human listeners. Annu. Rev. Psychol. 42, 135–159 (1991).

    Article  CAS  Google Scholar 

  15. Knudsen, E. I. & Konishi, M. Mechanisms of sound localisation in the barn owl (Tyto alba). J. Comp. Physiol. 133, 13–21 (1979).

    Article  Google Scholar 

  16. Takahashi, T., Moiseff, A. & Konishi, M. Time and intensity cues are processed independently in the auditory system of the owl. J. Neurosci. 4, 1781–1786 (1984).

    Article  CAS  Google Scholar 

  17. Olsen, J. F., Knudsen, E. I. & Esterly, S. D. Neural maps of interaural time and intensity differences in the optic tectum of the barn-owl. J. Neurosci. 9, 2591–2605 (1989).

    Article  CAS  Google Scholar 

  18. Carr, C. E. & Konishi, M. A circuit for detection of interaural time differences in the brainstem of the barn owl. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  Google Scholar 

  19. Smith, P. H., Joris, P. X. & Yin, T. C. T. Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines in the medial superior olive. J. Comp. Neurol. 331, 245–260 (1992).

    Article  Google Scholar 

  20. Beckius, G. E., Batra, R. & Oliver, D. L. Axon from anteroventral cochlear nucleus that terminates in medial superior olive of the cat: observations related to delay lines. J. Neurosci. 19, 3146–3161 (2000).

    Article  Google Scholar 

  21. Domintz, R. H. & Colburn, H. S. Lateral position and interaural discrimination. J. Acoust. Soc. Am. 61, 1586–1598 (1977).

    Article  Google Scholar 

  22. Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson, A. E. & Kalina, R. E. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236, 579–582 (1987).

    Article  CAS  Google Scholar 

  23. Stillman, R. D. Characteristic delay neurons in the inferior colliculus of the kangaroo rat. Exp. Neurol. 32, 404–412 (1971).

    Article  CAS  Google Scholar 

  24. Phillips, D. P. & Brugge, J. F. Progress in neurophysiology of sound localisation. Annu. Rev. Psychol. 36, 245–274 (1985).

    Article  CAS  Google Scholar 

  25. von Békésy, G. Zur theorie des hörens. Über das richtungshören bei einer zeitdifferenz oder lautstärkenungleichheit der beiderseitigen schalleinwirkungen. Physik. Z. 31, 824–835 (1930).

    Google Scholar 

  26. van Bergeijk, W. A. Variation on a theme of von Békésy: a model of binaural interaction. J. Acoust. Soc. Am. 34, 1431–1437 (1962).

    Article  Google Scholar 

  27. Colburn, H. S. & Latimer, J. S. Theory of binaural interaction based on auditory-nerve data III. Joint dependence on interaural time and amplitude differences in discrimination and detection. J. Acoust. Soc. Am. 64, 95–106 (1978).

    Article  CAS  Google Scholar 

  28. Elverland, H. H. Ascending and intrinsic projections of the superior olivary complex in the cat. Exp. Brain Res. 32, 117–134 (1978).

    Article  CAS  Google Scholar 

  29. Yin, T. C. T. & Chan, J. C. K. Interaural time sensitivity in medial superior olive of cat. J. Neurophysiol. 64, 465–488 (1990).

    Article  CAS  Google Scholar 

  30. Spitzer, M. W. & Semple, M. N. Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. J. Neurophysiol. 73, 1668–1690 (1995).

    Article  CAS  Google Scholar 

  31. Batra, R., Kuwada, S. & Fitzpatrick, D. C. Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J. Neurophysiol. 78, 1222–1236 (1997).

    Article  CAS  Google Scholar 

  32. McAlpine, D., Jiang, D. & Palmer, A. R. Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear. Res. 97, 136–152 (1996).

    Article  CAS  Google Scholar 

  33. McAlpine, D., Jiang, D., Shackleton, T. M. & Palmer A. R. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J. Neurosci. 18, 6026–6039 (1998).

    Article  CAS  Google Scholar 

  34. Yin, T. C. T., Chan, J. C. K. & Irvine, D. R. F. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. I. Responses to wideband noise. J. Neurophysiol. 55, 280–300 (1986).

    Article  CAS  Google Scholar 

  35. Yin, T. C. T., Chan, J. C. K. & Carney, L. H. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. III. Evidence for cross-correlation. J. Neurophysiol. 58, 562–583 (1987).

    Article  CAS  Google Scholar 

  36. Joris, P. X., Carney, L. H., Smith, P. H. & Yin, T. C. T. Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J. Neurophysiol. 71, 1022–1036 (1994).

    Article  CAS  Google Scholar 

  37. Fitzpatrick, D. C., Batra, R., Stanford, T. R. & Kuwada, S. A neuronal population code for sound localisation. Nature 388, 871–874 (1997).

    Article  CAS  Google Scholar 

  38. Kuwada, S., Batra, R. & Fitzpatrick, D. C. in Binaural and Spatial Hearing in Real and Virtual Environments (eds. Gilkey, R. H. & Anderson, T. R.) 399–426 (Erlbaum, Mahwah, New Jersey, 1997).

    Google Scholar 

  39. Shackleton, T. M., McAlpine, D. & Palmer, A. R. Modelling convergent input onto interaural-delay-sensitive inferior colliculus neurons. Hear. Res. 149, 199–215 (2000).

    Article  CAS  Google Scholar 

  40. Shamma, S. A., Shen, N. & Gopalaswamy, P. Stereausis: binaural processing without neural delays. J. Acoust. Soc. Am. 86, 989–1006 (1989).

    Article  CAS  Google Scholar 

  41. Jenkins, W. M. & Masterton, R. B. Sound localization: effects of unilateral lesions in central auditory system. J. Neurophysiol. 47, 987–1016 (1982).

    Article  CAS  Google Scholar 

  42. Wenstrup, J. J., Ross, L. S. & Pollak, G. D. Binaural response organization within a frequency-band representation of the inferior colliculus: implications for sound localization. J. Neurosci. 6, 964–973 (1986).

    Article  Google Scholar 

  43. Delgutte, B., Joris, P. X., Litovsky, R. Y. & Yin, T. C. T. Receptive fields and binaural interactions for virtual space stimuli in the cat inferior colliculus. J. Neurophysiol. 81, 2833–2851 (1999).

    Article  CAS  Google Scholar 

  44. Jiang, D., McAlpine, D. & Palmer, A. R. Detectability index measures of binaural masking level differences across populations of inferior colliculus neurons. J. Neurosci. 17, 9331–9339 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David McAlpine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAlpine, D., Jiang, D. & Palmer, A. A neural code for low-frequency sound localization in mammals. Nat Neurosci 4, 396–401 (2001). https://doi.org/10.1038/86049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing